Skip to main content
Log in

The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: Studies on langmuir-blodgett monolayers, liposomes and J774 macrophages

  • Article
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The macrolide antibiotic azithromycin was shown to markedly inhibit endocytosis. Here we investigate the interaction of azithromycin with biomembranes and its effects on membrane biophysics in relation to endocytosis. Equilibrium dialysis and 31P NMR revealed that azithromycin binds to lipidic model membranes and decreases the mobility of phospholipid phosphate heads. In contrast, azithromycin had no effect deeper in the bilayer, based on fluorescence polarization of TMA-DPH and DPH, compounds that, respectively, explore the interfacial and hydrophobic domains of bilayers, and it did not induce membrane fusion, a key event of vesicular trafficking. Atomic force microscopy showed that azithromycin perturbed lateral phase separation in Langmuir-Blodgett monolayers, indicating a perturbation of membrane organization in lateral domains. The consequence of azithromycin/phospholipid interaction on membrane endocytosis was next evaluated in J774 macrophages by using three tracers with different insertion preferences inside the biological membranes and intracellular trafficking: C6-NBD-SM, TMA-DPH and N-Rh-PE. Azithromycin differentially altered their insertion into the plasma membrane, slowed down membrane trafficking towards lysosomes, as evaluated by the rate of N-Rh-PE self-quenching relief, but did not affect bulk membrane internalization of C6-NBD-SM and TMA-DPH. Azithromycin also decreased plasma membrane fluidity, as shown by TMA-DPH fluorescence polarization and confocal microscopy after labeling by fluorescent concanavalin A. We conclude that azithromycin directly interacts with phospholipids, modifies biophysical properties of membrane and affects membrane dynamics in living cells. This antibiotic may therefore help to elucidate the physico-chemical properties underlying endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C6-NBD-SM:

6-((N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl) sphingosyl phosphocholine

N- Rh- PE:

N-(lissamine rhodamine B sulfonyl) diacyl phosphatidylethanolamine;

DPH:

l,6-diphenyl-l,3,5-hexatriene

TMA-DPH:

1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene

Rl8:

octadecylrhodamine B

AFM:

atomic force microscopy

MLV:

multilamellar vesicles

LUV:

large unilamellar vesicles

SUV:

small unilamellar vesicles

DPPC:

dipalmitoylphosphatidylcholine

References

  • Agasosler, A.V., Tungodden, L.M., Cejka, D., Bakstad, E., Sydnes, L.K., Holmsen, H. 2001. Chlorpromazine-induced increase in dipalmitoylphosphatidylserine surface area in monolayers at room temperature. Biochem. Pharmacol. 61:817–825

    Article  PubMed  CAS  Google Scholar 

  • Asawakarn, T., Cladera, J., O’Shea, P. 2001. Effects of the membrane dipole potential on the interaction of saquinavir with phospholipid membranes and plasma membrane receptors of Caco-2 cells. J. Biol. Chem. 276:38457–38463

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, G.R. 1959. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468

    PubMed  CAS  Google Scholar 

  • Bastiaanse, E.M., Jongsma, H.J., van derLaarse, A., Takens-Kwak, B.R. 1993. Heptanol-induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol-rich domains. J. Membrane Biol. 136:135–145

    Article  CAS  Google Scholar 

  • Bazzoni, G., Rasia, M. 2001. Effect of tetracaine chlorhydrate on the mechanical properties of the erythrocyte membrane. Blood Cells Mol. Dis. 27:391–398

    Article  PubMed  CAS  Google Scholar 

  • Bright, G.M., Nagel, A.A., Bordner, J., Desa, K.A., Dibrino, J.N., Nowakowska, J., Vincent, L., Watrous, R.M., Sciavolino, F.C. 1988. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-aza-9a-homoerythromycin A derivatives: a new class of macrolide antibiotics, the azalides. J. Antibiot. 41:1029–1047

    PubMed  CAS  Google Scholar 

  • Carlier, M.-B., Garcia-Luque, I., Montenez, J-P., Tulkens, P.M., Piret, J. 1994. Accumulation, release and subcellular localization of azithromycin in phagocytic and non-phagocytic cells in culture. Int. J. Tiss. Reac. 16:211–220

    CAS  Google Scholar 

  • Cazzalini, O., Lazze, M.C., Lamele, L., Stivala, L.A., Bianchi, L., Vaghi, P., Cornaglia, A., Calligaro, A., Vannini, V. 2001. Early effects of AZT on mitochondrial functions in the absence of mitochondrial DNA depletion in rat myotubes. Biochem. Pharmacol. 62:893–902

    Article  PubMed  CAS  Google Scholar 

  • Coupin, G., Kuhry, J.-G. 1999. Differentiation between clathrindependent and clathrin-independent endocytosis by means of membrane fluidity measurements. Cell. Biochem. Biophys. 30:25–34

    Article  PubMed  CAS  Google Scholar 

  • Dai, J., Sheetz, M.P. 1995. Regulation of endocytosis, exocytosis, and shape by membrane tension. Cold Spring Harb. Symp. Quant. Biol. 60:567–571

    PubMed  CAS  Google Scholar 

  • Djokic, S., Kobrehel, G., Lazarevski, G. 1987. Erythromycin series. XII. Antibacterial in vitro evaluation of 10-dihydro-10-deoxo-l1-azaerythromycin A: synthesis and structure-activity relationship of its acyl derivatives. J. Antibiot. 11:1006–1015

    Google Scholar 

  • Draye, J.P., Courtoy, P.J., Quintart, J., Baudhuin, P. 1988. A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation. J. Cell Biol. 107:2109–2115

    Article  PubMed  CAS  Google Scholar 

  • Dufrêne, Y.F., Lee, G.U. 2000. Advances in the characterization of supported lipid films with the atomic force microscope. Biochim. Biophys. Acta 1509:14–41

    Article  PubMed  Google Scholar 

  • Düzgünes, N., Allen, T.M., Fedor, J., Papahadjopoulos, D. 1987. Lipid mixing during membrane aggregation and fusion: why fusion assays disagree. Biochemistry 26:8435–8442

    Article  PubMed  Google Scholar 

  • Farge, E. 1995. Increased vesicle endocytosis due to an increase in the plasma membrane phosphatidylserine concentration. Biophys. J. 69:2501–2506

    Article  PubMed  CAS  Google Scholar 

  • Farge, E., Ojcius, D.M., Subtil, A., Dautry-Varsat, A. 1999. Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am. J. Physiol. 276:C725-C733

    PubMed  CAS  Google Scholar 

  • Friedlander, G., Le Grimellec, C, Giocondi, M.C., Amiel, C. 1987. Benzyl alcohol increases membrane fluidity and modulates cyclic AMP synthesis in intact renal epithelial cells. Biochim. Biophys. Acta 903:341–348

    Article  PubMed  CAS  Google Scholar 

  • Gheber, L.A., Edidin, M. 1999. A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys. J. 77:3163–3175

    Article  PubMed  CAS  Google Scholar 

  • Go, M.L., Feng, S.S. 2001. Halofantrine-phospholipid interactions: monolayer studies. Chem. Pharm. Bull. 49:871–876

    Article  PubMed  CAS  Google Scholar 

  • Grage, S.L., Gauger, D.R., Selle, C, Pohle, W., Richter, W., Ulrich, A.S. 2000. The amphiphilic drug flufenamic acid can induce a hexagonal phase in DMPC: a solid state P-31 and F-19-NMR study. Phys. Chem. Chem. Phys. 2:4574–4579

    Article  CAS  Google Scholar 

  • Heerklotz, H. 2001. Membrane stress and permeabilization induced by asymmetric incorporation of compounds. Biophys. J. 81:184–195

    Article  PubMed  CAS  Google Scholar 

  • Hing, A.W., Schaefer, J., Kobayashi, G.S. 2000. Deuterium NMR investigation of an amphotericin B derivative in mechanically aligned lipid bilayers. Biochim. Biophys. Ada 1463:323–332

    Article  CAS  Google Scholar 

  • Hoekstra, D., de Boer, T., Klappe, K., Wilschut, J. 1984. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681

    Article  PubMed  CAS  Google Scholar 

  • Huijbregts, R.P., Topalof, L., Bankaitis, V.A. 2000. Lipid metabolism and regulation of membrane trafficking. Traffic 1:195–202

    Article  PubMed  CAS  Google Scholar 

  • Huttner, W.B., Zimmerberg, J. 2001. Implications of lipid microdomains for membrane curvature, budding and fission. Curr. Opin. Cell. Biol. 13:478–484

    Article  PubMed  CAS  Google Scholar 

  • Illinger, D., Poindron, P., Fonteneau, P., Modollel, M., Kuhry, J.G. 1990. Internalization of the lipophilic fluorescent probe trimethylamino-diphenylhexatriene follows the endocytosis and recycling of the plasma membrane in cells. Biochim. Biophys. Acta 1030:73–81

    Article  PubMed  CAS  Google Scholar 

  • Illinger, D., Poindron, P., Kuhry, J.-G. 1991. Membrane fluidity aspects in endocytosis; a study with the fluorescent probe trimethylamino-diphenylhexatriene in L929 cells. Biol. Cell 71:293–296

    Article  PubMed  CAS  Google Scholar 

  • Jutila, A., Soderlund, T., Pakkanen, A.L., Huttunen M., Kinnunen, P.K. 2001. Comparison of the effects of clozapine, chlorpromazine and haloperidol on membrane lateral heterogeneity. Chem. Phys. Lipids 112:151–163

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, R.D., London, E., 1998. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry 37:8180–8190

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, S., Matsubayashi, M., Kotani, K., Usui, K., Kametani, F. 1991. Asymmetry of membrane fluidity in the lipid bilayer of blood platelets: fluorescence study with diphenylhexatriene and analogs. J. Membrane Biol. 119:221–227

    Article  CAS  Google Scholar 

  • Kok, J.W., ter Beest, M., Scherphof, G., Hoekstra, D. 1990. A non-exchangeable fluorescent phospholipid analog as a membrane traffic marker of the endocytic pathway. Eur. J. Cell Biol. 53:173–184

    CAS  Google Scholar 

  • Koval, M., Pagano, R.E. 1989. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts. J. Cell Biol. 108:2169–2181

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275

    PubMed  CAS  Google Scholar 

  • Marsh, M. 2001. Endocytosis. Oxford University Press. Corby, Northants, UK

    Google Scholar 

  • Mason, R.P., Mak, IT., Trumbore, M.W., Mason, P.E. 1999. Antioxidant properties of calcium antagonists related to membrane biophysical interactions. Am. J. Cardiol. 84:16L-22L

    Article  PubMed  CAS  Google Scholar 

  • Milhaud, J., Ponsinet, V., Takashi, M., Michels, B. 2002. Interactions of the drug amphotericin B with phospholipid membranes containing or not ergosterol: new insight into the role of ergosterol. Biochim. Biophys. Acta 1558:95–108

    Article  PubMed  CAS  Google Scholar 

  • Mingeot-Leclercq, M.-P., Gallet, X., Flore, C, Van Bambeke, F., Peuvot, J., Brasseur, R. 2001. Experimental and conformational analyses of interactions between butenafine and lipids. Antimicrob. Agents Chemother. 45:3347–3354

    Article  PubMed  CAS  Google Scholar 

  • Mingeot-Leclercq, M.P., Schanck, A., Ronveaux-Dupal, M.F., Deleers, M., Brasseur, R., Ruysschaert, J.M., Laurent, G., Tulkens, P.M. 1989. Ultrastructural, physico-chemical and conformational study of the interactions of gentamicin and bis(beta-diethylaminoethylether)hexestrol with negatively charged phospholipid bilayers. Biochem. Pharmacol. 38:729–741

    Article  PubMed  CAS  Google Scholar 

  • Mingeot-Leclercq, M.P., Tulkens, P.M. 1999. Aminoglycosides: nephrotoxicity. Antimicrob. Agents Chemother. 43:1003–1012

    PubMed  CAS  Google Scholar 

  • Montenez, J.P., Van Bambeke, F., Piret, J., Brasseur, R., Tulkens, P.M., Mingeot-Leclercq, M.P. 1999. Interactions of macrolide antibiotics (erythromycin A, roxithromycin, erythromycylamine and azithromycin) with phospholipids: computer-aided conformational analysis and studies on acellular and cell culture models. Toxicol. Applied Pharmacol. 156:129–140

    Article  CAS  Google Scholar 

  • Montenez, J.P., Van Bambeke, F., Piret, J., Schanck, A., Brasseur, R., Tulkens, P.M., Mingeot-Leclercq, M.P. 1996. Interaction of the macrolide azithromycin with phospholipids. II. Biophysical and computer-aided conformational studies. Eur. J. Pharmacol. 314:215–227

    Article  PubMed  CAS  Google Scholar 

  • Morgan, C.G., Williamson, H., Fuller, S., Hudson, B. 1983. Melittin induces fusion of unilamellar phospholipid vesicles. Biochim. Biophys. Acta 732:668–674

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, S., Ghosh, R.N., Maxfield, F.R. 1997. Endocytosis. Physiol. Rev. 77:759–803

    PubMed  CAS  Google Scholar 

  • Mukherjee, S., Maxfield, F.R. 2000. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1:203–211

    Article  PubMed  CAS  Google Scholar 

  • Puri, V., Watanabe, R., Singh, R.D., Dominguez, M., Brown, J.C., Wheatley, C.L., Marks, D.L., Pagano, R.E. 2001. Clathrindependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 154:535–547

    Article  PubMed  CAS  Google Scholar 

  • Rauch, C, Farge, E. 2000. Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys. J. 78:3036–3047

    Article  PubMed  CAS  Google Scholar 

  • Raucher, D., Sheetz, M.P. 2001. Phospholipase C activation by anesthetics decreases membrane-cytoskeleton adhesion. J. Cell. Sci. 114:3759–3766

    PubMed  CAS  Google Scholar 

  • Roberson, M., Neri A., Oppenheimer, S.B. 1975. Distribution of concanavalin A receptor sites on specific populations of embryonic cells. Science 189:639–640

    Article  PubMed  CAS  Google Scholar 

  • Roth, M.G., Sternweis, P.C. 1997. The role of lipid signaling in constitutive membrane traffic. Curr. Opin. Cell Biol. 9:519–526

    Article  PubMed  CAS  Google Scholar 

  • Saint-Laurent, A., Boudreau, N., Lariviere, D., Legault, J., Gaudreault, R.C., Auger, M. 2001. Membrane interactions of a new class of anticancer agents derived from arylchloroethylurea: a FTIR spectroscopic study. Chem. Phys. Lipids 111:163–175

    Article  PubMed  CAS  Google Scholar 

  • Seelig, J. 1978.31P Nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim. Biophys. Acta 515:105–140

    PubMed  CAS  Google Scholar 

  • Snyderman, R., Pike, M.C., Fischer, D.G., Koren, H.S. 1977. Biologic and biochemical activities of continuous macrophage cell lines P 338 Dl and J 774 1. J. Immunol. 119:2060–2066

    PubMed  CAS  Google Scholar 

  • Sparr, E., Ekelund, K., Engblom, J., Engstreöm, S., Wennerstöm, H. 1999. An AFM study of lipid monoiayers: II. The effect of cholesterol on fatty acids. Langmuir 15:6946–6949

    Article  Google Scholar 

  • Takei, K., Haucke, V. 2001. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol. 11:385–391

    Article  PubMed  CAS  Google Scholar 

  • Tang, Q., Edidin, M. 2001. Vesicle trafficking and cell surface membrane patchiness. Biophys. J. 81:196–203

    Article  PubMed  CAS  Google Scholar 

  • Tyteca, D., Van DerSmissen, P., Mettlen, M., Van Bambeke, F., Tulkens, P.M., Mingeot-Leclercq, M.P., Courtoy, P.J. 2002. Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages. Exp. Cell Res. 281: 86–100

    Article  PubMed  CAS  Google Scholar 

  • Tyteca, D., Van DerSmissen, P., Van Bambeke, F., Leys, K., Tulkens, P.M., Courtoy, P.J., Mingeot-Leclercq, M.P. 2001. Azithromycin, a lysosomotropic antibiotic, impairs fluid-phase pinocytosis in cultured fibroblasts. Eur. J. Cell Biol. 80:466–478

    Article  PubMed  CAS  Google Scholar 

  • Van Bambeke, F., Mingeot-Leclercq, M.P., Schanck, A., Brasseur, R., Tulkens, P.M. 1993. Alterations in membrane permeability induced by aminoglycoside antibiotics: studies on liposomes and cultured cells. Eur. J. Pharmacol. 247:155–168

    Article  PubMed  Google Scholar 

  • Van Bambeke, F., Montenez, J.P., Piret, J., Tulkens, P.M., Courtoy, P.J., Mingeot-Leclercq, M.P. 1996. Interaction of the macrolide azithromycin with phospholipids. I. Inhibition of lysosomal phospholipase Al activity. Eur. J. Pharmacol. 314:203–214

    Article  PubMed  Google Scholar 

  • Van Bambeke, F., Tulkens, P.M., Brasseur, R., Mingeot-Leclercq, M.P. 1995. Aminoglycoside antibiotics induce aggregation but not fusion of negatively-charged liposomes. Eur. J. Pharmacol. 289:321–333

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Mingeot-Leclercq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyteca, D., Schanck, A., Dufrêne, Y.F. et al. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: Studies on langmuir-blodgett monolayers, liposomes and J774 macrophages. J. Membrane Biol. 192, 203–215 (2003). https://doi.org/10.1007/s00232-002-1076-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-002-1076-7

Key words

Navigation