Skip to main content
Log in

The Hormonal Control of Uterine Luminal Fluid Secretion and Absorption

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The secretion of uterine luminal fluid initially provides a transport and support medium for spermatozoa and unimplanted embryos, while the absorption of uterine luminal fluid in early pregnancy results in the closure of the lumen and allows blastocysts to establish intimate contact with the uterine epithelium. We have established an in vivo perfusion technique of the lumen to study the hormonal control of the events in the peri-implantation period. Fluorescein-labelled dextran was included in the perfusion medium to monitor fluid movements and the concentrations of Na+ and CI ions in the effluent were monitored. Using an established regimen of steroid treatment of ovariectomized rats mimicking early pregnancy, oestradiol caused fluid secretion, while progesterone resulted in an amiloride-sensitive fluid absorption. Fluid absorption peaked at about the expected time of implantation. The effect of progesterone could be inhibited by treatment with a high dose of oestradiol, by the anti-progestin RU486, and by the presence of an intra-uterine contraceptive device. Studies of expression of Na+ and CI channels (ENaC, CFTR) indicated that these channels were subject to tissue-specific regulation within the uterus, but more work is required to determine their role and the factors controlling their abundance and localization in early pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alvarez de la Rosa D., Li H., Canessa C.M. 2002. Effects of aldosterone on biosynthesis, traffic, and functional expression of epithelial sodium channels in A6 cells. J. Gen. Physiol. 119:427–442

    CAS  PubMed  Google Scholar 

  • Armstrong D.T. 1968. Hormonal control of uterine lumen fluid retention in the rat. Am. J. Physiol. 214:764–771

    CAS  PubMed  Google Scholar 

  • Baines D.L, Folkesson H.G., Norlin A., Bingle C.D., Yuan H.J., Olver R.E. 2000. The influence of mode of delivery, hormonal status and postnatal O2 environment on epithelial sodium channel (ENaC) expression in perinatal guinea-pig lung. J. Physiol. 522:147–157

    Article  CAS  PubMed  Google Scholar 

  • Beier H.M., Beier-Hellwig K. 1998. Molecular and cellular aspects of endometrial receptivity. Hum. Reprod. Update 4:448–458

    Article  CAS  PubMed  Google Scholar 

  • Canessa C.M., Merillat A.M., Rossier B.C. 1994 Membrane topology of the epithelial sodium channel in intact cells. Am. J. Physiol. 267:C1682–1690

    CAS  PubMed  Google Scholar 

  • Casslen B. 1986. Uterine fluid volume. Cyclic variations and possible extra uterine contributions. J. Reprod. Med. 31:506–510

    CAS  PubMed  Google Scholar 

  • Casslen B., Nilsson B. 1984. Human uterine fluid, examined in undiluted samples for osmolarity and the concentrations of inorganic ions, albumin, glucose, and urea. Am. J. Obstet. Gynecol. 15:877–881

    Google Scholar 

  • Chan H.C., Fong S.K., So S.C., Chung Y.W., Wong P.Y. 1997. Stimulation of anion secretion by beta-adrenoceptors in the mouse endometrial epithelium. J. Physiol. 15:517–525

    Google Scholar 

  • Chan L.N., Chung Y.W, Leung P.S., Liu C.Q., Chan H.C. 1999. Activation of an adenosine 3′,5′-cyclic monophosphate-dependent chloride conductance in response to neurohormonal stimuli in mouse endometrial epithelial cells: the role of cystic fibrosis transmembrane conductance. Biol. Reprod. 60:374–380

    Article  CAS  PubMed  Google Scholar 

  • Chan L.N., Tsang LL, Rowlands O.K., Rochelle L.G., Boucher R.C., Liu C.Q., Chan H.C. 2002. Distribution and regulation of ENaC subunit and CFTR mRNA expression in murine female reproductive tract. J. Membrane Biol. 185:165–176

    Article  CAS  Google Scholar 

  • Chan L.N., Wang X.F., Tsang LL, So S.C., Chung Y.W., Liu C.Q., Chan H.C. 2001. Inhibition of amiloride-sensitive Na+ absorption by activation of CFTR in mouse endometrial epithelium. Pflugers Arch 443 Suppl 1:S132–S136

    CAS  PubMed  Google Scholar 

  • Chanson M., Scerri I., Suter S. 1999 Defective regulation of gap junctional coupling in cystic fibrosis pancreatic duct cells. J. Clin. Invest. 103:1677–1684

    CAS  PubMed  Google Scholar 

  • Chaudhury M.R., Chaudhury R.R. 1976. Effect of an intrauterine silk thread in the rat on the amino acid content of the intraluminal fluid. J. Reprod. Fertil. 48:199–200

    CAS  PubMed  Google Scholar 

  • Clemetson C.A., Kim J.K., Mallikarjuneswara V.R., Wilds J.H. 1972. The sodium and potassium concentrations in the uterine fluid in the rat at the time of implantation. J. Endocrinol. 54:417–423

    CAS  PubMed  Google Scholar 

  • Clemetson C.A., Mallikarjuneswara V.R., Moshfeghi M.M., Carr J.J., Wilds J.H. 1970.The effects of oestrogen and progesterone on the sodium and potassium concentrations of rat uterine fluid. J. Endocrinol. 47:309–319

    CAS  PubMed  Google Scholar 

  • Clemetson C.A., Verma U.L., De, Carlo S.J. 1977. Secretion and reabsorption of uterine luminal fluid in rats. J. Reprod. Fertil. 49:183–187

    CAS  PubMed  Google Scholar 

  • Dao B., Vanage G., Marshall A., Bardin C.W., Koide S.S. 1996. Anti-implantation activity of antioestrogens and mifepristone. Contracept. 54:253–258

    CAS  Google Scholar 

  • Enders A.C., Nelson D.M. 1973. Pinocytotic activity of the uterus of the rat. Am. J. Anat. 138: 277–300

    Article  CAS  PubMed  Google Scholar 

  • Firsov D., Gautschi I., Merillat A.M., Rossier B.C., Schild L. 1998. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J. 17:344–344

    Article  CAS  PubMed  Google Scholar 

  • Folkesson H.G., Norlin A., Baines D.L. 1998. Salt and water transport across the alveolar epithelium in the developing lung: Correlations between function and recent molecular biology advances. Int. J. Mol. Med. 2:515–531

    CAS  PubMed  Google Scholar 

  • Garty H., Palmer L.G. 1997. Epithelial sodium channels: function, structure and regulation. Physiol. Rev. 77:359–396

    CAS  PubMed  Google Scholar 

  • Hamilton J.A., Iles R.K., Gunn L.K., Wilson C.M., Lower A.M., Chard T., Grudzinskas J.G. 1998. Concentrations of placental protein 14 in uterine flushings from infertile women: validation of the collection technique and method of expression of results. Hum. Reprod. 13:3357–3362

    CAS  PubMed  Google Scholar 

  • Hedlund K., Nilsson O., Reinus S., Aman G. 1972. Attachment reaction of the uterine luminal epithelium at implantation: light and electron microscopy of the hamster, guinea-pig, rabbit and mink. J. Reprod. Fertil. 29:131–132

    CAS  PubMed  Google Scholar 

  • Hoversland R.C., Weitlauf H.M. 1981 The volume of uterine fluid in ‘implanting’ and ‘delayed implanting’ mice. J. Reprod. Fertil. 62:105–109

    CAS  PubMed  Google Scholar 

  • Huang D.M., Nardo L.G., Huang G.Y., Lu F.E., Liu Y.J. 2005. Effect of a single dose of mifepristone on expression of pinopodes in endometrial surface of mice. Acta Pharmacol. Sin. 26:212–219

    CAS  PubMed  Google Scholar 

  • Hughey R.P., Mueller G.M., Bruns J.B., Kinlough C.L., Poland P.A., Harkleroad K.L., Carattino M.D., Kleyman T.R. 2003. Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha- and gamma-subunits. J. Biol. Chem. 278:37073–37082

    Article  CAS  PubMed  Google Scholar 

  • Kennedy T.G., Armstrong D.T. 1975. Loss of uterine luminal fluid in the rat: relative importance of changing peripheral levels of oestrogen and progesterone. Endocrinology 97:1379–1385

    CAS  PubMed  Google Scholar 

  • Kennedy T.G., Lukash L.A. 1982. Induction of decidualization in rats by the intrauterine infusion of prostaglandins. Biol. Reprod. 27:253–60

    Article  CAS  PubMed  Google Scholar 

  • Kleizen B., Braakman I., de Jonge H.R. 2000. Regulated trafficking of the CFTR chloride channel. Eur. J. Cell Biol. 2000 79:544–556

    CAS  Google Scholar 

  • Kosari F., Sheng S., Li J., Mak D.O., Foskett J.K., Kleyman T.R. 1998. Subunit stoichiometry of the epithelial sodium channel. J. Biol. Chem. 273:13469–13474

    Article  CAS  PubMed  Google Scholar 

  • Krauss R.D., Bubien J.K., Drumm M.L., Zheng T., PeiperS.C., Collins F.S., Kirk K.L., Frizzell R.A., Rado T.A. 1992. Transfection of wild-type CFTR into cystic fibrosis lymphocytes restores chloride conductance at G1 of the cell cycle. EMBO J. 11:875–883

    CAS  PubMed  Google Scholar 

  • Lee M.G., Choi J.Y., Luo X., Strickland E., Thomas P.J., Muallem S. 1999. Cystic fibrosis transmembrane conductance regulator regulates luminal Cl/HCO3 exchange in mouse submandibular and pancreatic ducts. J. Biol. Chem. 274:14670–14677

    CAS  PubMed  Google Scholar 

  • Leroy F., van Hoeck J., Bogaert C. 1976. Hormonal control of pinocytosis in the uterine epithelium of the rat. J. Reprod. Fertil. 47:59–62

    CAS  PubMed  Google Scholar 

  • Ljungkvist I. 1972 Attachment reaction of rat uterine luminal epithelium. IV. The cellular changes in the attachment reaction and its hormonal regulation. Fertil. Steril. 23:847–883

    CAS  PubMed  Google Scholar 

  • Lucas M.L., Thom M.M.M., Bradely J.M., O’Reilly N.F., McIlvenny T.J., Nelson Y.B. 2005. Escherichia Coli heat-stable (STa) enterotoxin and the upper small intestine: Lack of evidence in vivo for net fluid secretion. J. Membrane Biol. 206:29–42

    Google Scholar 

  • Maier D.B., Kuslis S.T. 1988. Human uterine luminal fluid volumes and prolactin levels in normal menstrual cycles. Am. J. Obst. Gynec. 159:434–439

    CAS  Google Scholar 

  • Mall M., Bleich M., Greger R., Schreiber R., Kunzelmann K. 1998 The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways. J. Clin. Invest. 102:15–21

    CAS  PubMed  Google Scholar 

  • Martin L., Finn C.A. 1978. Effects of an intra-uterine device on uterine cell division and epithelial morphology in ovariectomized mice treated with oestrogen and progesterone. J. Endocrinol. 78:417–425

    CAS  PubMed  Google Scholar 

  • Martin L., Finn C.A. 1979. Varying effects of an IUD on decidualization in mice. J. Reprod. Fertil. 55:125–133

    CAS  PubMed  Google Scholar 

  • Martin L., Finn C.A., Carter J. 1970. Effects of progesterone and oestradiol on the luminal epithelium of the mouse uterjjs. J. Reprod. Fertil. 21:461–469

    CAS  PubMed  Google Scholar 

  • Matthews C.J., McEwan G.T., Redfern C.P., Thomas E.J., Hirst B.H. .1998. Absorptive apical amiloride-sensitive Na+ conductance in human endometrial epithelium. J. Physiol. 513:443–452

    Article  CAS  PubMed  Google Scholar 

  • Masilamani S., Wang X., Kim G.H., Brooks H., Nielsen J., Nielsen S., Nakamura K., Stokes J.B., Knepper M.A. 2002.Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction. Am. J. Physiol. 283:F648–F657

    Google Scholar 

  • Milligan S.R., Martin L. 1984. The resistance of mouse uterine lumen to flushing and contamination of samples by plasma and interstitial fluid. J. Reprod. Fertil. 71:81–87

    CAS  PubMed  Google Scholar 

  • Murdoch R.N., White I.G. 1968. The influence of the female genital tract on the metabolism of rabbit spermatozoa: Effect of storage with glucose lactate bicarbonate and female genital tract fluid. Aust. J. Biol. Sci. 21:973–980

    CAS  PubMed  Google Scholar 

  • Murphy C.R. 2000. Understanding the apical surface markers of uterine receptivity: pinopods-or uterodomes? Hum. Reprod. 15:2451–2454

    Article  CAS  PubMed  Google Scholar 

  • Naftalin R.J., Pedley K. 1999. Regional crypt function in rat large intestine in relation to fluid absorption and growth of the pericryptal sheath. J. Physiol. 514: 211–227

    CAS  PubMed  Google Scholar 

  • Naftalin R.J., Thiagarajah J.R., Pedley K.C., Pocock V.J., Milligan S.R. 2002. Progesterone stimulation of fluid absorption by the rat uterine gland. Reproduction 123:633–638

    Article  CAS  PubMed  Google Scholar 

  • Naftalin R.J., Zammit P.S., Pedley K.C. 1995. Concentration polarization of fluorescent dyes in rat descending colonic crypts: evidence of crypt fluid absorption. J. Physiol. 487:479–495

    CAS  PubMed  Google Scholar 

  • Nardo L.G., Sabatini L., Rai R., Nardo F. 2002. Pinopode expression during human implantation. Eur. J. Obstet. Gynecol. Reprod. Biol. 101:104–108

    Article  CAS  PubMed  Google Scholar 

  • Nikas G., Drakakis P., Loutradis D., Mara-Skoufari C., Koumantakis E., Michalas S., Psychoyos A. 1995. Uterine pinopodes as markers of the ‘nidation window’ in cycling women receiving exogenous oestradiol and progesterone. Hum. Reprod. 10:1208–1213

    CAS  PubMed  Google Scholar 

  • Nordenvall M., Ulmsten U., Ungerstedt U. 1989 Influence of progesterone on the sodium and potassium concentrations of rat uterine fluid investigated by microdialysis. Gynecol. Obstet. Invest. 28:73–77

    CAS  PubMed  Google Scholar 

  • Olver R.E., Ramsden C.A., Strang L.B., Walters D.V. 1986. The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J. Physiol. 376:321–340

    CAS  PubMed  Google Scholar 

  • Parr M.B. 1983. Relationship of uterine closure to ovarian hormones and endocytosis in the rat J. Reprod. Fertil. 68:185–188

    CAS  Google Scholar 

  • Parr M.R., Parr E.L. 1974. Uterine luminal epithelium: protrusions mediate endocytosis, not apocrine secretion, in the rat. Biol. Reprod. 11:220–233

    CAS  PubMed  Google Scholar 

  • Runci F.M., Cerretani D., Bianchi E., Bruni G., Giorgi G. 1989. Kinetics of amiloride in rat following oral and intravenous administration. Boll. Soc. Ital. Biol. Sper. 65:939–943

    CAS  PubMed  Google Scholar 

  • Schwiebert E.M., Benos D.J., Egan M.E., Stutts M.J., Guggino W.B. 1999. Physiol.Rev. 79:S145–166

    Google Scholar 

  • Shaw S.T. Jr., Azar E., Moyer D.L. 1975. 3H2O volume and exchange in uterine cavity of monkeys. Am. J. Physiol. 229:1465–1470

    PubMed  Google Scholar 

  • Snyder P.M., Cheng C., Prince L.S., Rogers J.C., Welsh M.J. 1998 Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J. Biol. Chem. 273:681–684

    Article  CAS  PubMed  Google Scholar 

  • Spinnato J.A. 2nd 1997. Mechanism of action of intrauterine contraceptive devices and its relation to informed consent. Am. J. Obstet. Gynecol. 176:503–506

    PubMed  Google Scholar 

  • Strandell A., Lindhard A. 2002. Why does hydrosalpinx reduce fertility? The importance of hydrosalpinx fluid. Hum. Reprod. 17:1141–1145

    Article  PubMed  Google Scholar 

  • Stutts, M.J., Canessa, C.M., Olsen, J.C., Hamrick, M., Cohn, J.A., Rossier, B.C., Boucher, R.C. 1995. Science 269:847–850

    Google Scholar 

  • Tantayaporn P., Mallikarjuneswara V.R., De Carlo S.J., Clemetson C.A.B. 1974. The effects of oestrogen and progesterone on the volume and electrolyte content of the uterine luminal fluid in rat. Endocrinology 95:1034–1043

    CAS  PubMed  Google Scholar 

  • Tauber P.P., Cramer G.M., Zaneveld L.J. 1993. Effect of the intrauterine contraceptive device on protein components of human uterine fluid. Contraception 48:494–512

    Article  CAS  PubMed  Google Scholar 

  • Thiagarajah J.R., Jayaraman S., Naftalin R.J., Verkman A.S. 2001a. In vivo fluorescence measurement of Na+ concentration in the pericryptal space of mouse descending colon Am. J. Physiol. 281:C1898–C1903

    CAS  Google Scholar 

  • Thiagarajah J.R., Pedley K.C., Naftalin R.J. 2001b. Evidence of amiloride sensitive fluid absorption in rat descending colonic crypts from confocal microscopic studies of fluorescence recovery of FITC-labelled deXtrans after photobleaching. J. Physiol. 536:541–553

    Article  CAS  Google Scholar 

  • Tousson A., Van Tine B.A., Naren A.P., Shaw G.M., Schwiebert L.M. 1998. Characterization of CFTR expression and chloride channel activity in human endothelia. Am. J. Physiol. 275:C1555–1564

    CAS  PubMed  Google Scholar 

  • Tsang L.L., Chan L.N., Wang X.F., So S.C., Yuen J.P., Fiscus R.R., Chan H.C. 2001 Enhanced epithelial Na+ channel (ENaC) activity in mouse endometrial epithelium by upregulation of gammaENaC subunit. Jpn. J. Physiol. 51:539–543

    Article  CAS  PubMed  Google Scholar 

  • Wang X.F., Chan H.C. 2000. Adenosine triphosphate induces inhibition of Nayabsorption in mouse endometrial epithelium: a Ca2+-dependent mechanism. Biol. Reprod. 63:1918–1924

    CAS  PubMed  Google Scholar 

  • Wang X.F., Yu M.K., Lam S.Y., Leung K.M., Jiang J.L., Leung P.S., Ko W.H., Leung P.Y., Chew S.B.C., Liu C.Q., Tse C.M., Chan H.C. 2003. Expression, immunolocalization and functional activity of Na+/H+ exchanger isoforms in mouse endometrial epithelium. Biol. Reprod. 68:302–308

    CAS  PubMed  Google Scholar 

  • Wei L, Vankeerberghen A., Cuppens H., Eggermont J., Cassiman J.J., Droogmans G., Nilius B. 1999. Interaction between calcium-activated chloride channels and the cystic fibrosis transmembrane conductance regulator. Pfluegers Arch. 438:635–641

    Article  CAS  Google Scholar 

  • Weyler R.T., Yurko-Mauro K.A., Rubenstein R., Kollen W.J., Reenstra W., Altschuler S.M., Egan M., Mulberg A.E. 1999. CFTR is functionally active in GnRH-expressing GT1-7 hypothalamic neurons. Am. J. Physiol. 277:C563–571

    CAS  PubMed  Google Scholar 

  • Wodopia R., Ko H.S., Billian J., Wiesner R., Bartsch P., Mairbaurl H. 2000. Hypoxia decreases proteins involved in epithelial electrolyte transport in A549 cells and rat lung. Am. J. Physiol. Mol. Physiol. 279: L1110–L1119

    CAS  Google Scholar 

  • Yang J.Z., Ajonuma L.C., Tsang L.L., Lam S.Y., Rowlands O.K., Ho L.S., Zhou C.X., Chung Y.W., Chan H.C. 2004. Differential expression and localization of CFTR and ENaC in mouse endometrium during pre-implantation. Cell. Biol. Int. 28:433–439

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.R. Milligan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salleh, N., Baines, D., Naftalin, R. et al. The Hormonal Control of Uterine Luminal Fluid Secretion and Absorption. J Membrane Biol 206, 17–28 (2005). https://doi.org/10.1007/s00232-005-0770-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0770-7

Keywords

Navigation