Skip to main content
Log in

Statistical Assessment of Change Point Detectors for Single Molecule Kinetic Analysis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Change point detectors (CPDs) are used to segment recordings of single molecules for the purpose of kinetic analysis. The assessment of the accuracy of CPD algorithms has usually been based on testing them with simulated data. However, there have not been methods to assess the output of CPDs from real data independent of simulation. Here we present one method to do this based on the assumption that the elementary kinetic unit is a stationary period (SP) with a normal distribution of samples, separated from other SPs by change points (CPs). Statistical metrics of normality can then be used to assess SPs detected by a CPD algorithm (detected SPs, DSPs). Two statistics in particular were found to be useful, the z-transformed skew (S Z) and z-transformed kurtosis (K Z). K Z(S Z) plots of DSP from noise, simulated data and single ion channel recordings showed that DSPs with false negative CP could be distinguished. Also they showed that filtering had a significant effect on the normality of data and so filtering should be taken into account when calculating statistics. This method should be useful for analyzing single molecule recordings where there is no simple model for the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  • Basseville M (1988) Detecting changes in signals and systems—a general survey. Automatica 24:309–326

    Article  Google Scholar 

  • Carter BC, Vershinin M, Gross SP (2008) A comparison of step-detection methods: how well can you do? Biophys J 94:306–319

    Article  PubMed  CAS  Google Scholar 

  • Chui JKW, Fyles TM (2012) Ionic conductance of synthetic channels: analysis, lessons, and recommendations. Chem Soc Rev 41:148–175

    Article  PubMed  CAS  Google Scholar 

  • Cochrane WG (1934) The distribution of quadratic forms in a normal system with applications to the analysis of covariance. Math Proc Camb Philos Soc 30:178–191

    Article  Google Scholar 

  • Cochrane WG (1954) Methods for strengthening the common χ 2 tests. Biometrics 10:417–451

    Article  Google Scholar 

  • Crouzy SC, Sigworth FJ (1993) Fluctuations in ion channel gating currents. Analysis of nonstationary shot noise. Biophys J 64:68–76

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino RB, Belanger A, D’Agostino RBJ (1990) A suggestion for using powerful and informative tests of normality. Am Stat 44:316–321

    Google Scholar 

  • Fitzhugh R (1983) Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis. Math Biosci 64:75–89

    Article  Google Scholar 

  • Frauenfelder H, Parak F, Young RD (1988) Conformational substates in proteins. Annu Rev Biophys Biophys Chem 17:451–479

    Article  PubMed  CAS  Google Scholar 

  • Fyles TM, Loock D, Zhou X (1998) Ion channels based on bis-macrocyclic bolaamphiphiles: effects of hydrophobic substitutions. Can J Chem 76:1015–1026

    Article  CAS  Google Scholar 

  • Heinemann SH, Sigworth FJ (1988) Open channel noise. IV. Estimation of rapid kinetics of formamide block in gramicidin A channels. Biophys J 54:757–764

    Article  PubMed  CAS  Google Scholar 

  • Heinemann SH, Sigworth FJ (1990) Open channel noise. V. Fluctuating barriers to ion entry in gramicidin A channels. Biophys J 57:499–514

    Article  PubMed  CAS  Google Scholar 

  • Heinemann SH, Sigworth FJ (1991) Open channel noise. VI. Analysis of amplitude histograms to determine rapid kinetic parameters. Biophys J 60:577–587

    Article  PubMed  CAS  Google Scholar 

  • Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int Stat Rev 55:163–172

    Article  Google Scholar 

  • Kassam SA, Thomas JB (1988) Signal detection in non-gaussian noise. Springer-Verlag, New York

    Book  Google Scholar 

  • Millhauser GL, Salpeter EE, Oswald RE (1988) Diffusion models of ion-channel gating and the origin of power-law distributions from single-channel recording. Proc Natl Acad Sci USA 85:1503–1507

    Article  PubMed  CAS  Google Scholar 

  • Moghaddamjoo A (1988) Step-like signal processing with distinct finite number of levels. IEEE Trans Ind Electron 35:489–493

    Article  Google Scholar 

  • Parsons SP, Kunze WA, Huizinga JD (2012) Maxi-channels recorded in situ from ICC and pericytes associated with the mouse myenteric plexus. Am J Physiol Cell Physiol 302:C1055–C1069

    Article  PubMed  CAS  Google Scholar 

  • Pastushenko VP, Schindler H (1997) Level detection in ion channel records via idealization by statistical filtering and likelihood optimization. Philos Trans R Soc Lond B Biol Sci 352:39–51

    Article  PubMed  CAS  Google Scholar 

  • Patlak JB (1988) Sodium channel subconductance levels measured with a new variance–mean analysis. J Gen Physiol 92:413–430

    Article  PubMed  CAS  Google Scholar 

  • Patlak JB (1993) Measuring kinetics of complex single ion channel data using mean–variance histograms. Biophys J 65:29–42

    Article  PubMed  CAS  Google Scholar 

  • Pearson ES (1931) Note on tests for normality. Biometrika 22:423–424

    Google Scholar 

  • Pebay P (2008) Formulas for robust, one-pass parallel computation of covariances and arbitrary-order statistical moments. Sandia National Laboratories, Albuquerque

    Book  Google Scholar 

  • Rice SO (1945) Statistical properties of random noise currents. Bell Syst Tech J 24:46–156

    Google Scholar 

  • Riessner T, Woelk F, Abshagen-Keunecke M, Caliebe A, Hansen UP (2002) A new level detector for ion channel analysis. J Membr Biol 189:105–118

    Article  PubMed  CAS  Google Scholar 

  • Sabirov RZ, Okada Y (2009) The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. J Physiol Sci 59:3–21

    Article  PubMed  CAS  Google Scholar 

  • Sansom MSP, Ball FG, Kerry CJ, Mcgee R, Ramsey RL, Usherwood PNR (1989) Markov, fractal, diffusion, and related models of ion channel gating—a comparison with experimental-data from 2 ion channels. Biophys J 56:1229–1243

    Article  PubMed  CAS  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  • Schroder I, Huth T, Suitchmezian V, Jarosik J, Schnell S, Hansen UP (2004) Distributions-per-level: a means of testing level detectors and models of patch-clamp data. J Membr Biol 197:49–58

    Article  PubMed  CAS  Google Scholar 

  • Schultze R, Draber S (1993) A nonlinear filter algorithm for the detection of jumps in patch-clamp data. J Membr Biol 132:41–52

    PubMed  CAS  Google Scholar 

  • Sigworth FJ (1985) Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuations. Biophys J 47:709–720

    Article  PubMed  CAS  Google Scholar 

  • Sigworth FJ (1986) Open channel noise. II. A test for coupling between current fluctuations and conformational transitions in the acetylcholine receptor. Biophys J 49:1041–1046

    Article  PubMed  CAS  Google Scholar 

  • Sigworth FJ, Sine SM (1987) Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J 52:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Sigworth FJ, Urry DW, Prasad KU (1987) Open channel noise. III. High-resolution recordings show rapid current fluctuations in gramicidin A and four chemical analogues. Biophys J 52:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Steinier J, Termonia Y, Deltour J (1972) Comments on smoothing and differentiation of data by simplified least square procedure. Anal Chem 44:1906–1909

    Article  PubMed  CAS  Google Scholar 

  • Thompson RJ, Nordeen MH, Howell KE, Caldwell JH (2002) A large-conductance anion channel of the Golgi complex. Biophys J 83:278–289

    Article  PubMed  CAS  Google Scholar 

  • Traynelis SF, Jaramillo F (1998) Getting the most out of noise in the central nervous system. Trends Neurosci 21:137–145

    Article  PubMed  CAS  Google Scholar 

  • Tyerman SD, Terry BR, Findlay GP (1992) Multiple conductances in the large K+ channel from Chara corallina shown by a transient analysis method. Biophys J 61:736–749

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro SR (2007) Nonlinear drift–diffusion model of gating in the fast Cl channel. Phys Rev E Stat Nonlin Soft Matter Phys 76:011923

    Article  PubMed  CAS  Google Scholar 

  • VanDongen AM (1996) A new algorithm for idealizing single ion channel data containing multiple unknown conductance levels. Biophys J 70:1303–1315

    Article  PubMed  CAS  Google Scholar 

  • Webster RJ (1993) Ambient noise statistics. IEEE Trans Signal Proc 41:2249–2253

    Article  Google Scholar 

  • Webster RJ (1994) A random number generator for ocean noise statistics. IEEE J Ocean Eng 19:134–137

    Article  Google Scholar 

  • Wolff SS (1967) On probability distributions for filtered white noise. IEEE Trans Inf Theory 13:481–484

    Article  Google Scholar 

  • Yellen G (1984) Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J Gen Physiol 84:157–186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by a CIHR operating grant (MOP12874) and a NSERC Discovery grant (386877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Parsons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, S.P., Huizinga, J.D. Statistical Assessment of Change Point Detectors for Single Molecule Kinetic Analysis. J Membrane Biol 246, 407–420 (2013). https://doi.org/10.1007/s00232-013-9553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9553-8

Keywords

Navigation