Skip to main content
Log in

Set-theoretical solutions of the Yang–Baxter and pentagon equations on semigroups

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

The Yang–Baxter and pentagon equations are two well-known equations of Mathematical Physic. If S is a set, a map \(s:S\times S\rightarrow S\times S\) is said to be a set-theoretical solution of the quantum Yang–Baxter equation if

$$\begin{aligned} s_{23}\, s_{13}\, s_{12} = s_{12}\, s_{13}\, s_{23}, \end{aligned}$$

where \(s_{12}=s\times {{\,\mathrm{id}\,}}_S\), \(s_{23}={{\,\mathrm{id}\,}}_S\times s\), and \(s_{13}=({{\,\mathrm{id}\,}}_S\times \tau )\,s_{12}\,({{\,\mathrm{id}\,}}_S\times \tau )\) and \(\tau \) is the flip map, i.e., the map on \(S\times S\) given by \(\tau (x,y)=(y,x)\). Instead, s is called a set-theoretical solution of the pentagon equation if

$$\begin{aligned} s_{23}\, s_{13}\, s_{12}=s_{12}\, s_{23}. \end{aligned}$$

The main aim of this work is to display how solutions of the pentagon equation turn out to be a useful tool to obtain new solutions of the Yang–Baxter equation. Specifically, we present a new construction of solutions of the Yang–Baxter equation involving two specific solutions of the pentagon equation. To this end, we provide a method to obtain solutions of the pentagon equation on the matched product of two semigroups, that is a semigroup including the classical Zappa product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres. Ann. Sci. Éc. Norm. Sup. 26(4), 425–488 (1993). https://doi.org/10.24033/asens.1677

    Article  MATH  Google Scholar 

  2. Baaj, S., Skandalis, G.: Transformations pentagonales. C. R. Acad. Sci. Paris Sér. I Math. 327(7), 623–628 (1998). https://doi.org/10.1016/S0764-4442(99)80090-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Castelli, M., Catino, F., Miccoli, M.M., Pinto, G.: Dynamical extensions of quasi-linear left cycle sets and the Yang–Baxter equation. J. Algebra Appl. 18(11), 1950220, 16 (2019). https://doi.org/10.1142/s0219498819502207

    Article  MathSciNet  MATH  Google Scholar 

  4. Castelli, M., Catino, F., Pinto, G.: A new family of set-theoretic solutions of the Yang–Baxter equation. Commun. Algebra 46(4), 1622–1629 (2018). https://doi.org/10.1080/00927872.2017.1350700

    Article  MathSciNet  MATH  Google Scholar 

  5. Castelli, M., Catino, F., Pinto, G.: Indecomposable involutive set-theoretic solutions of the Yang–Baxter equation. J. Pure Appl. Algebra 223(10), 4477–4493 (2019). https://doi.org/10.1016/j.jpaa.2019.01.017

    Article  MathSciNet  MATH  Google Scholar 

  6. Catino, F.: Factorizable semigroups. Semigroup Forum 36(2), 167–174 (1987). https://doi.org/10.1007/BF02575013

    Article  MathSciNet  MATH  Google Scholar 

  7. Catino, F., Colazzo, I., Stefanelli, P.: Semi-braces and the Yang–Baxter equation. J. Algebra 483, 163–187 (2017). https://doi.org/10.1016/j.jalgebra.2017.03.035

    Article  MathSciNet  MATH  Google Scholar 

  8. Catino, F., Colazzo, I., Stefanelli, P.: The matched product of the solutions to the Yang–Baxter Equation of finite order. Mediterr. J. Math. 17, 58 (2020). https://doi.org/10.1007/s00009-020-1483-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Catino, F., Mazzotta, M., Miccoli, M.M.: Set-theoretical solutions of the pentagon equation on groups. Commun. Algebra 48(1), 83–92 (2020). https://doi.org/10.1080/00927872.2019.1632331

    Article  MathSciNet  MATH  Google Scholar 

  10. Cedó, F., Gateva-Ivanova, T., Smoktunowicz, A.: Braces and symmetric groups with special conditions. J. Pure Appl. Algebra 222(12), 3877–3890 (2018). https://doi.org/10.1016/j.jpaa.2018.02.012

    Article  MathSciNet  MATH  Google Scholar 

  11. Cedó, F., Jespers, E., Okniński, J.: Braces and the Yang–Baxter equation. Commun. Math. Phys. 327(1), 101–116 (2014). https://doi.org/10.1007/s00220-014-1935-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Mathematical Surveys, No. 7, vol. I. American Mathematical Society, Providence (1961)

    MATH  Google Scholar 

  13. Cvetko-Vah, K., Verwimp, C.: Skew lattices and set-theoretic solutions of the Yang–Baxter equation. J. Algebra 542, 65–92 (2020). https://doi.org/10.1016/j.jalgebra.2019.10.007

    Article  MathSciNet  MATH  Google Scholar 

  14. Drinfel’d, V.G.: On some unsolved problems in quantum group theory. Quantum Groups (Leningrad, 1990). Lecture Notes in Mathematics, vol. 1510, pp. 1–8. Springer, Berlin (1992). https://doi.org/10.1007/BFb0101175

    Chapter  Google Scholar 

  15. Etingof, P., Schedler, T., Soloviev, A.: Set-theoretical solutions to the quantum Yang–Baxter equation. Duke Math. J. 100(2), 169–209 (1999). https://doi.org/10.1215/S0012-7094-99-10007-X

    Article  MathSciNet  MATH  Google Scholar 

  16. Gateva-Ivanova, T.: Set-theoretic solutions of the Yang–Baxter equation, braces and symmetric groups. Adv. Math. 338, 649–701 (2018). https://doi.org/10.1016/j.aim.2018.09.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Gateva-Ivanova, T., Van den Bergh, M.: Semigroups of \(I\)-type. J. Algebra 206(1), 97–112 (1998). https://doi.org/10.1006/jabr.1997.7399

    Article  MathSciNet  MATH  Google Scholar 

  18. Gomes, G.M.S.: On left quasinormal orthodox semigroups. Proc. R. Soc. Edinb. Sect. A 95(1–2), 59–71 (1983). https://doi.org/10.1017/S0308210500015791

    Article  MathSciNet  MATH  Google Scholar 

  19. Guarnieri, L., Vendramin, L.: Skew braces and the Yang–Baxter equation. Math. Comput. 86(307), 2519–2534 (2017). https://doi.org/10.1090/mcom/3161

    Article  MathSciNet  MATH  Google Scholar 

  20. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs, vol. 12. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  21. Jespers, E., Van Antwerpen, A.: Left semi-braces and solutions of the Yang–Baxter equation. Forum Math. 31(1), 241–263 (2019). https://doi.org/10.1515/forum-2018-0059

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, L.-N., Liu, M.: On set-theoretical solution of the pentagon equation. Adv. Math. (China) 34(3), 331–337 (2005)

    MathSciNet  Google Scholar 

  23. Kashaev, R.: Fully noncommutative discrete Liouville equation, in: Infinite analysis 2010–Developments in quantum integrable systems, RIMS Kôkyûroku Bessatsu, B28, Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 89–98 (2011)

  24. Kashaev, R.M., Reshetikhin, N.: Symmetrically factorizable groups and self-theoretical solutions of the Pentagon Equation. Quantum Groups. Contemporary Mathematics, vol. 433, pp. 267–279. American Mathematical Society, Providence (2007). https://doi.org/10.1090/conm/433/083

    Chapter  Google Scholar 

  25. Kashaev, R.M., Sergeev, S.M.: On pentagon, ten-term, and tetrahedron relations. Commun. Math. Phys. 195(2), 309–319 (1998). https://doi.org/10.1007/s002200050391

    Article  MathSciNet  MATH  Google Scholar 

  26. Kunze, M.: Zappa products. Acta Math. Hungar. 41(3–4), 225–239 (1983). https://doi.org/10.1007/BF01961311

    Article  MathSciNet  MATH  Google Scholar 

  27. Lebed, V.: Cohomology of idempotent braidings with applications to factorizable monoids. Internat. J. Algebra Comput. 27(4), 421–454 (2017). https://doi.org/10.1142/S0218196717500229

    Article  MathSciNet  MATH  Google Scholar 

  28. Lebed, V., Vendramin, L.: Homology of left non-degenerate set-theoretic solutions to the Yang–Baxter equation. Adv. Math. 304, 1219–1261 (2017). https://doi.org/10.1016/j.aim.2016.09.024

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, J.-H., Yan, M., Zhu, Y.-C.: On the set-theoretical Yang–Baxter equation, Duke Math. J. 104(1), 1–18 (2000). https://doi.org/10.1215/S0012-7094-00-10411-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Matsumoto, D.K., Shimizu, K.: Quiver-theoretical approach to dynamical Yang–Baxter maps. J. Algebra 507, 47–80 (2018). https://doi.org/10.1016/j.jalgebra.2018.04.003

    Article  MathSciNet  MATH  Google Scholar 

  31. Militaru, G.: The Hopf modules category and the Hopf equation. Commun. Algebra 26(10), 3071–3097 (1998). https://doi.org/10.1080/00927879808826329

    Article  MathSciNet  MATH  Google Scholar 

  32. Monzo, R.A.R.: Pre-compatible almost endomorphisms and semigroups whose cube is a band. Semigroup Forum 67(3), 355–372 (2003). https://doi.org/10.1007/s00233-001-0004-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Rump, W.: A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation. Adv. Math. 193(1), 40–55 (2005). https://doi.org/10.1016/j.aim.2004.03.019

    Article  MathSciNet  MATH  Google Scholar 

  34. Rump, W.: Braces, radical rings, and the quantum Yang–Baxter equation. J. Algebra 307(1), 153–170 (2007). https://doi.org/10.1016/j.jalgebra.2006.03.040

    Article  MathSciNet  MATH  Google Scholar 

  35. Smoktunowicz, A.: On Engel groups, nilpotent groups, rings, braces and the Yang–Baxter equation. Trans. Am. Math. Soc. 370(9), 6535–6564 (2018). https://doi.org/10.1090/tran/7179

    Article  MathSciNet  MATH  Google Scholar 

  36. Smoktunowicz, A., Vendramin, L.: On skew braces (with an appendix by N. Byott and L. Vendramin). J. Comb. Algebra 2(1), 47–86 (2018). https://doi.org/10.4171/JCA/2-1-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, D.: The interplay between \(k\)-graphs and the Yang–Baxter equation. J. Algebra 451, 494–525 (2016). https://doi.org/10.1016/j.jalgebra.2016.01.001

    Article  MathSciNet  MATH  Google Scholar 

  38. Zakrzewski, S.: Poisson Lie groups and pentagonal transformations. Lett. Math. Phys. 24(1), 13–19 (1992). https://doi.org/10.1007/BF00429998

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for carefully reading our manuscript and for giving useful suggestions.

Funding

This work was partially supported by the Dipartimento di Matematica e Fisica “Ennio De Giorgi” - Università del Salento. The authors are members of GNSAGA (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Catino.

Additional information

Communicated by Jan Okniński.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catino, F., Mazzotta, M. & Stefanelli, P. Set-theoretical solutions of the Yang–Baxter and pentagon equations on semigroups. Semigroup Forum 101, 259–284 (2020). https://doi.org/10.1007/s00233-020-10100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-020-10100-x

Keywords

Navigation