Skip to main content

Advertisement

Log in

Magnetic resonance plaque imaging to predict the occurrence of the slow-flow phenomenon in carotid artery stenting procedures

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose is to investigate the feasibility of magnetic resonance (MR) plaque imaging in predicting the arterial flow impairment (slow-flow phenomenon) during carotid artery stenting (CAS) using a filter-type protection device.

Methods

Thirty-one carotid artery stenotic lesions in 30 patients (28 men and two women; mean age, 71.8 years) were evaluated by MR plaque imaging with black blood T1- and T2-weighted and time-of-flight sequences before CAS. Main plaque components were classified as vulnerable (intraplaque hemorrhage and lipid-rich/necrotic core) or stable (fibrous tissue and dense calcification) from the signal pattern. The plaque classification was statistically compared with the occurrence of slow-flow phenomenon.

Results

The slow-flow phenomenon was observed in ten CAS procedures (five flow arrests and five flow reductions). Flow arrests consisted of four vulnerable and one stable plaque, and flow reductions consisted of four vulnerable and one stable plaque. The slow-flow phenomenon occurred significantly (P < 0.01) more frequently in patients with vulnerable plaque.

Conclusions

Vulnerable carotid plaques have a significantly higher risk of slow-flow phenomenon than stable plaques. The occurrence of the slow-flow phenomenon can be predicted by MR plaque imaging before CAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yuan C, Zhang SX, Polissar NL et al (2002) Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 105:181–185

    Article  PubMed  Google Scholar 

  2. Corti R, Fuster V, Fayad ZA et al (2002) Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years' follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 106:2884–2887

    Article  CAS  PubMed  Google Scholar 

  3. Takaya N, Yuan C, Chu B et al (2005) Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation 111:2768–2775

    Article  PubMed  Google Scholar 

  4. Takaya N, Yuan C, Chu B et al (2006) Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI—initial results. Stroke 37:818–823

    Article  PubMed  Google Scholar 

  5. Saam T, Hatsukami TS, Takaya N et al (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77

    Article  PubMed  Google Scholar 

  6. Yamada N, Higashi M, Otsubo R et al (2007) Association between signal hyperintensity on T1-weighted MR imaging of carotid plaques and ipsilateral ischemic events. AJNR Am J Neuroradiol 28:287–292

    CAS  PubMed  Google Scholar 

  7. Casserly IP, Abou-Chebl A, Fathi RB et al (2005) Slow-flow phenomenon during carotid artery intervention with embolic protection devices: predictors and clinical outcome. J Am Coll Cardiol 46:1466–1472

    Article  PubMed  Google Scholar 

  8. Palombo G, Faraglia V, Stella N et al (2008) Late evaluation of silent cerebral ischemia detected by diffusion-weighted MR imaging after filter-protected carotid artery stenting. AJNR Am J Neuroradiol 29:1340–1343

    Article  CAS  PubMed  Google Scholar 

  9. Kastrup A, Groschel K, Nagele T et al (2008) Effects of age and symptom status on silent ischemic lesions after carotid stenting with and without the use of distal filter devices. AJNR Am J Neuroradiol 29:608–612

    Article  CAS  PubMed  Google Scholar 

  10. Kim SJ, Roh HG, Jeon P et al (2007) Cerebral ischemia detected with diffusion-weighted MR imaging after protected carotid artery stenting: comparison of distal balloon and filter device. Korean J Radiol 8:276–285

    Article  PubMed  Google Scholar 

  11. Rapp JH, Wakil L, Sawhney R et al (2007) Subclinical embolization after carotid artery stenting: new lesions on diffusion-weighted magnetic resonance imaging occur postprocedure. J Vasc Surg 45:867–872

    Article  PubMed  Google Scholar 

  12. Yuan C, Mitsumori LM, Beach KW et al (2001) Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 221:285–299

    Article  CAS  PubMed  Google Scholar 

  13. Fayad ZA, Fuster V (2001) Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 89:305–316

    Article  CAS  PubMed  Google Scholar 

  14. Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325

    Article  CAS  PubMed  Google Scholar 

  15. Saam T, Ferguson MS, Yarnykh VL et al (2005) Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 25:234–239

    Article  CAS  PubMed  Google Scholar 

  16. Saam T, Cai J, Ma L et al (2006) Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging. Radiology 240:464–472

    Article  PubMed  Google Scholar 

  17. Ota H, Yu W, Underhill HR et al (2009) Hemorrhage and large lipid-rich necrotic cores are independently associated with thin or ruptured fibrous caps: an in vivo 3T MRI study. Arterioscler Thromb Vasc Biol 29:1696–1701

    Article  CAS  PubMed  Google Scholar 

  18. Shah PK (2009) Inflammation and plaque vulnerability. Cardiovasc Drugs Ther 23:31–40

    Article  CAS  PubMed  Google Scholar 

  19. Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley white lecture 1995. Circulation 94:2013–2020

    CAS  PubMed  Google Scholar 

  20. Manninen HI, Rasanen HT, Vanninen RL et al (1999) Stent placement versus percutaneous transluminal angioplasty of human carotid arteries in cadavers in situ: distal embolization and findings at intravascular US, MR imaging and histopathologic analysis. Radiology 212:483–492

    CAS  PubMed  Google Scholar 

  21. Jordan WD Jr, Voellinger DC, Doblar DD et al (1999) Microemboli detected by transcranial Doppler monitoring in patients during carotid angioplasty versus carotid endarterectomy. Cardiovasc Surg 7:33–38

    Article  PubMed  Google Scholar 

  22. Markus HS, Clifton A, Buckenham T et al (1994) Carotid angioplasty. Detection of embolic signals during and after the procedure. Stroke 25:2403–2406

    CAS  PubMed  Google Scholar 

  23. Theron JG, Payelle GG, Coskun O et al (1996) Carotid artery stenosis: treatment with protected balloon angioplasty and stent placement. Radiology 201:627–636

    CAS  PubMed  Google Scholar 

  24. Ohki T, Veith FJ, Grenell S et al (2002) Initial experience with cerebral protection devices to prevent embolization during carotid artery stenting. J Vasc Surg 36:1175–1185

    Article  PubMed  Google Scholar 

  25. Henry M, Amor M, Henry I et al (1999) Carotid stenting with cerebral protection: first clinical experience using the PercuSurge GuardWire system. J Endovasc Surg 6:321–331

    Article  CAS  PubMed  Google Scholar 

  26. Albuquerque FC, Teitelbaum GP, Lavine SD et al (2000) Balloon-protected carotid angioplasty. Neurosurgery 46:918–921

    Article  CAS  PubMed  Google Scholar 

  27. Parodi JC, Mura RL, Ferreira LM et al (2002) Safety maneuvers to prevent embolism complicating endovascular aortic repair. J Vasc Surg 36:1076–1078

    Article  PubMed  Google Scholar 

  28. Reimers B, Corvaja N, Moshiri S et al (2001) Cerebral protection with filter devices during carotid artery stenting. Circulation 104:12–15

    Article  CAS  PubMed  Google Scholar 

  29. Martin JB, Pache JC, Treggiari-Venzi M et al (2001) Role of the distal balloon protection technique in the prevention of cerebral embolic events during carotid stent placement. Stroke 32:479–484

    CAS  PubMed  Google Scholar 

  30. Bejarano J (2005) Mechanical protection of cardiac microcirculation during percutaneous coronary intervention of saphenous vein grafts. Int J Cardiol 99:365–372

    Article  PubMed  Google Scholar 

  31. Siewiorek GM, Wholey MH, Finol EA (2007) In vitro performance assessment of distal protection devices for carotid artery stenting: effect of physiological anatomy on vascular resistance. J Endovasc Ther 14:712–724

    Article  PubMed  Google Scholar 

  32. Katzen BT, Criado FJ, Ramee SR et al (2007) Carotid artery stenting with emboli protection surveillance study: thirty-day results of the CASES-PMS study. Catheter Cardiovasc Interv 70:316–323

    Article  PubMed  Google Scholar 

  33. Takayama K, Nakagawa H, Iwasaki S et al (2008) Initial experience of using the filter protection device during carotid artery stenting in Japan. Radiat Med 26:348–354

    Article  PubMed  Google Scholar 

  34. Siewiorek GM, Eskandari MK, Finol EA (2008) The angioguard embolic protection device. Expert Rev Med Devices 5:287–296

    Article  PubMed  Google Scholar 

  35. Finol EA, Siewiorek GM, Scotti CM et al (2008) Wall apposition assessment and performance comparison of distal protection filters. J Endovasc Ther 15:177–185

    Article  PubMed  Google Scholar 

  36. Angelini A, Reimers B, Della Barbera M et al (2002) Cerebral protection during carotid artery stenting: collection and histopathologic analysis of embolized debris. Stroke 33:456–461

    Article  PubMed  Google Scholar 

  37. Al-Mubarak N, Roubin GS, Vitek JJ et al (2002) Microembolization during carotid stenting with the distal-balloon antiemboli system. Int Angiol 21:344–348

    CAS  PubMed  Google Scholar 

  38. Burke AP, Farb A, Malcom GT et al (1999) Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 281:921–926

    Article  CAS  PubMed  Google Scholar 

  39. McCarthy MJ, Loftus IM, Thompson MM et al (1999) Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg 30:261–268

    Article  CAS  PubMed  Google Scholar 

  40. Mofidi R, Crotty TB, McCarthy P et al (2001) Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br J Surg 88:945–950

    Article  CAS  PubMed  Google Scholar 

  41. Kolodgie FD, Narula J, Yuan C et al (2007) Elimination of neoangiogenesis for plaque stabilization: is there a role for local drug therapy? J Am Coll Cardiol 49:2093–2101

    Article  CAS  PubMed  Google Scholar 

  42. Jeziorska M, Woolley DE (1999) Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries. J Pathol 188:189–196

    Article  CAS  PubMed  Google Scholar 

  43. Moreno PR, Purushothaman KR, Fuster V et al (2004) Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 110:2032–2038

    Article  PubMed  Google Scholar 

  44. Di Stefano R, Felice F, Balbarini A (2009) Angiogenesis as risk factor for plaque vulnerability. Curr Pharm Des 15:1095–1106

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Sakamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, M., Taoka, T., Nakagawa, H. et al. Magnetic resonance plaque imaging to predict the occurrence of the slow-flow phenomenon in carotid artery stenting procedures. Neuroradiology 52, 275–283 (2010). https://doi.org/10.1007/s00234-009-0623-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0623-7

Keywords

Navigation