Skip to main content
Log in

Mammillotegmental tract in the human brain: diffusion tensor tractography study

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Several animal studies have been conducted for the identification of the mammillotegmental tract (MTT); however, no study has been reported in the human brain.

Methods

In the current study, using diffusion tensor tractography (DTT), we attempted to identify the MTT in the human brain. We recruited 31 healthy volunteers for this study. Diffusion tensor images were acquired using 1.5 T, and the MTT was obtained using a probabilistic tractography method based on a multi-fiber model. Values of fractional anisotropy, mean diffusivity, and tract volume of the MTT were measured.

Results

MTTs of all subjects, which originated from the mammillary body, ascended posteriorly to the bicommissural level along the third ventricle and then turned caudally and terminated at the tegmentum of the midbrain. No significant differences were observed in terms of fractional anisotropy, mean diffusivity, and tract volume according to hemisphere and sex (P < 0.05). Using DTT, we identified the MTT in the human brain.

Conclusion

We believe that the methodology and results of this study would be helpful in research on the MTT in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Reference

  1. Alpeeva EV, Makarenko IG (2007) Perinatal development of mammillotegmental connections in rats. Ontogenez 38:86–93

    PubMed  CAS  Google Scholar 

  2. Shen CL (1983) Efferent projections from the mammillary complex of the guinea pig: an autoradiographic study. Brain Res Bull 11:43–59

    Article  PubMed  CAS  Google Scholar 

  3. Hayakawa T, Zyo K (1990) Fine structure of the lateral mammillary projection to the dorsal tegmental nucleus of gudden in the rat. J Comp Neurol 298:224–236

    Article  PubMed  CAS  Google Scholar 

  4. Hayakawa T, Zyo K (1990) Ultrastructure of the mammillotegmental projections to the ventral tegmental nucleus of gudden in the rat. J Comp Neurol 293:466–475

    Article  PubMed  CAS  Google Scholar 

  5. Vann SD (2010) Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia 48:2316–2327

    Article  PubMed  Google Scholar 

  6. Hayakawa T, Zyo K (1989) Retrograde double-labeling study of the mammillothalamic and the mammillotegmental projections in the rat. J Comp Neurol 284:1–11

    Article  PubMed  CAS  Google Scholar 

  7. Nauta WJ (1958) Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 81:319–340

    Article  PubMed  CAS  Google Scholar 

  8. Cruce JA (1977) An autoradiographic study of the descending connections of the mammillary nuclei of the rat. J Comp Neurol 176:631–644

    Article  PubMed  CAS  Google Scholar 

  9. Hayakawa T, Zyo K (1985) Afferent connections of gudden’s tegmental nuclei in the rabbit. J Comp Neurol 235:169–181

    Article  PubMed  CAS  Google Scholar 

  10. Guillery RW (1956) Degeneration in the post-commissural fornix and the mamillary peduncle of the rat. J Anat 90:350–370

    PubMed  CAS  Google Scholar 

  11. Nieuwenhuys R, Voogd J, Huijzen CV (2008) The human central nervous system, 4th edn. Springer, New York

    Google Scholar 

  12. Conn PM (2008) Neuroscience in medicine, 3rd edn. NJ, Humana Press, Totowa

    Book  Google Scholar 

  13. Kapil Gupta KW, Cummings S (1997) Human brain coloring workbook. The Princeton Review, New York

    Google Scholar 

  14. Hirsch MC (2000) Dictionary of human neuroanatomy. Springer, London

    Google Scholar 

  15. Vann SD, Aggleton JP (2004) The mammillary bodies: two memory systems in one? Nat Rev Neurosci 5:35–44

    Article  PubMed  CAS  Google Scholar 

  16. Sharp PE, Blair HT, Cho J (2001) The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci 24:289–294

    Article  PubMed  CAS  Google Scholar 

  17. Marion JF, Yang C, Caqueret A et al (2005) Sim1 and sim2 are required for the correct targeting of mammillary body axons. Development 132:5527–5537

    Article  PubMed  CAS  Google Scholar 

  18. Allen GV, Hopkins DA (1990) Topography and synaptology of mamillary body projections to the mesencephalon and pons in the rat. J Comp Neurol 301:214–231

    Article  PubMed  CAS  Google Scholar 

  19. Morest DK (1961) Connexions of the dorsal tegmental nucleus in rat and rabbit. J Anat 95:229–246

    PubMed  CAS  Google Scholar 

  20. Habas C, Cabanis EA (2007) Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3T. Neuroradiology 49:849–863

    Article  PubMed  Google Scholar 

  21. Jang SH, Park KA, Ahn SH et al (2009) Transcallosal fibers from corticospinal tract in patients with cerebral infarct. NeuroRehabilitation 24:159–164

    PubMed  Google Scholar 

  22. Kamali A, Kramer LA, Butler IJ et al (2009) Diffusion tensor tractography of the somatosensory system in the human brainstem: initial findings using high isotropic spatial resolution at 3.0T. Eur Radiol 19:1480–1488

    Article  PubMed  Google Scholar 

  23. Salamon N, Sicotte N, Alger J et al (2005) Analysis of the brain-stem white-matter tracts with diffusion tensor imaging. Neuroradiology 47:895–902

    Article  PubMed  CAS  Google Scholar 

  24. Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New York

    Book  Google Scholar 

  25. Stieltjes B, Kaufmann WE, Van Zijl PC et al (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14:723–735

    Article  PubMed  CAS  Google Scholar 

  26. Kwon HG, Hong JH, Jang SH (2010) Mammillothalamic tract in human brain: diffusion tensor tractography study. Neurosci Lett 481:51–53

    Article  PubMed  CAS  Google Scholar 

  27. Hong JH, Jang SH (2010) Neural pathway from nucleus basalis of meynert passing through the cingulum in the human brain. Brain research 1346:190-194

    Google Scholar 

  28. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  29. Behrens TE, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155

    Article  PubMed  CAS  Google Scholar 

  30. Behrens TE, Johansen-Berg H, Woolrich MW et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757

    Article  PubMed  CAS  Google Scholar 

  31. Duvernoy HM, Bourgouin P (1999) The human brain: surface, three-dimensional sectional anatomy with MRI, and blood supply. 2nd completely rev. and enl. ed. Wien. Springer, New York

  32. Field TD, Rosenstock J, King EC et al (1978) Behavioral role of the mammillary efferent system. Brain Res Bull 3:451–456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (KRF-2008-314-E00173).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, H.G., Hong, J.H. & Jang, S.H. Mammillotegmental tract in the human brain: diffusion tensor tractography study. Neuroradiology 53, 623–626 (2011). https://doi.org/10.1007/s00234-011-0858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-011-0858-y

Keywords

Navigation