Skip to main content
Log in

Evolutionary Analysis of the Small Heat Shock Proteins in Five Complete Algal Genomes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Small heat shock proteins (sHSPs) are chaperones that are crucial in the heat shock response but also have important nonstress roles within the cell. sHSPs are found in all three domains of life (Bacteria, Archaea, and Eukarya). These proteins are particularly diverse within land plants and the evolutionary origin of the land plant sHSP families is still an open question. Here we describe the identification of 17 small sHSPs from the complete genome sequences of five diverse algae: Chlamydomonas reinhardtii, Cyanidioschyzon merolae, Ostreococcus lucimarinus, Ostreococcus tauri, and Thalassiosira pseudonana. Our analysis indicates that the number and diversity of algal sHSPs are not correlated with adaptation to extreme conditions. While all of the algal sHSPs identified are members of this large and important superfamily, none of these sHSPs are members of the diverse land plant sHSP families. The evolutionary relationships among the algal sHSPs and homologues from bacteria and other eukaryotes are consistent with the hypothesis that the land plant chloroplast and mitochondrion sHSPs did not originate from the endosymbionts of the chloroplast and mitochondria. In addition the evolutionary history of the sHSPs is very different from that of the HSP70s. Finally, our analysis of the algal sHSPs sequences in light of the known sHSP crystal structures and functional data suggests that the sHSPs possess considerable structural and functional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Ghany SE, Day IS, Simmons P, Kugrens P, Reddy ASN (2005) Origin and evolution of Kinesin-like calmodulin-binding protein. Plant Physiol 138:1711–1722

    Article  PubMed  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL (2003) The deep roots of the eukaryotes. Science 300:1703–1706

    Article  PubMed  CAS  Google Scholar 

  • Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219:11–23

    Article  PubMed  CAS  Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    Article  PubMed  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  PubMed  CAS  Google Scholar 

  • Buchner J (1996) Supervising the fold: functional principles of molecular chaperones. FASEB J 10:10–19

    PubMed  CAS  Google Scholar 

  • Caspers G-J, Leunissen J, de Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “alpha-crystallin domain.” J Mol Evol 40:238–248

    Article  PubMed  CAS  Google Scholar 

  • de Jong WW, Leunissen JA, Voorter CE (1993) Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10:103–126

    PubMed  Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin—small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, von Heijne G (2001) Prediction of organellar targeting signals. Biochim Biophys Acta 1541:114–119

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Embley TM (2006) Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 361:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Feil IK, Malfois M, Hendle J, van Der Zandt H, Svergun DI (2001) A novel quaternary structure of the dimeric alpha-crystallin domain with chaperone-like activity. J Biol Chem 276:12024–12029

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Force A, Cresko WA, Pickett FB, Proulx SR, Amemiya C, Lynch M (2005) The origin of subfunctions and modular gene regulation. Genetics 170:433–446

    Article  PubMed  CAS  Google Scholar 

  • Franck E, Madsen O, van Rheede T, Ricard G, Huynen MA, de Jong WW (2004) Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol 59:792–805

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Jiao W, Chang Z (2006) Phylogenetic and biochemical studies reveal a potential evolutionary origin of small heat shock proteins of animals from bacterial class A. J Mol Evol 62:257–266

    Article  PubMed  CAS  Google Scholar 

  • Germot A, Philippe H, Le Guyader H (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci USA 93:14614–14617

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Holldobler B, van Ham RC, Gross R, Moya A (2003) The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA 100:9388–9393

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2:1137–1150

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) Bioedit: a user friendly biological sequence alignment editor and analysis program for windows. Nucleic Acids Symp Ser 42:95–98

    CAS  Google Scholar 

  • Heazlewood J, Tonti-Filippini J, AM G, Day D, Whelan J, Millar A (2004) Experimental analysis of the Arabidopsis mitchondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256

    Article  PubMed  CAS  Google Scholar 

  • Iwabe N, Kuma K, Miyata T (1996) Evolution of gene families and relationship with organismal evolution: rapid divergence of tissue-specific genes in the early evolution of chordates. Mol Biol Evol 13:483–493

    PubMed  CAS  Google Scholar 

  • Keegstra K, Froehlich JE (1999) Protein import into chloroplasts. Curr Opin Plant Biol 2:471–476

    Article  PubMed  CAS  Google Scholar 

  • Keeling P (2004) A brief history of plastids and their hosts. Protist 155:3–7

    Article  PubMed  CAS  Google Scholar 

  • Kiefel B, Gilson PR, Beech PL (2004) Diverse eukaryotes have retained mitochondrial homologues of the bacterial division protein FtsZ. Protist 155:105–115

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Kim KK, Yokota H, Kim S-H (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci USA 95:9129–9133

    Article  PubMed  CAS  Google Scholar 

  • Kloppstech K, Meyer G, Schuster G, Ohad I (1985) Synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein in the chloroplast membranes of peas and Chlamydomonas reinhardtii. EMBO J 4:1901–1909

    PubMed  CAS  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  PubMed  CAS  Google Scholar 

  • Lin BL, Wang HC, Liu RW, Y. C, Meyers A, Barakat A, Delseny M (2001) Genomic analysis of the HSP70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6:210–208

    Article  Google Scholar 

  • Lockton S, Gaut BS (2005) Plant conserved non-coding sequences and paralogue evolution. Trends Genet 21:60–65

    Article  PubMed  CAS  Google Scholar 

  • Marcotte E, Xenarios I, van der Bliek AM, Eisenberg D (2000) Localizing proteins in the cell from their phylogenetic profiles. Proc Natl Acad Sci USA 97:12115–12120

    Article  PubMed  CAS  Google Scholar 

  • Martin W (2003a) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 100:8612–8614

    Article  PubMed  CAS  Google Scholar 

  • Martin W (2003b) The smoking gun of gene transfer. Nat Genet 33:442

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hadegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin IT, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  PubMed  CAS  Google Scholar 

  • Misumi O, Matsuzaki M, Nozaki H, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Yoshida Y, Kuroiwa H, Kuroiwa T (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol 137:567–585

    Article  PubMed  CAS  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T (2003) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J Mol Evol 56:485–497

    Article  PubMed  CAS  Google Scholar 

  • Obornik M, Green BR (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22:2343–2353

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Peeters N, Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta 1541:54–63

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Vig J, Brambl R (1992) Phylogeny of the alpha-crystallin-related heat shock proteins. J Mol Evol 35:537–545

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Inoue K, Keegstra K (2005) Evolution of the general protein import pathway of plastids (review). Mol Membr Biol 22:73–86

    Article  PubMed  CAS  Google Scholar 

  • Robbens S, Khadaroo B, Camasses A, Derelle E, Ferraz C, Inze D, Van de Peer Y, Moreau H (2005) Genome-wide analysis of core cell cycle genes in the unicellular green alga Ostreococcus tauri. Mol Biol Evol 22:589–597

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Scharf K-D, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crytallin domains Acd protiens. Cell Stress Chaperones 6:255–237

    Article  Google Scholar 

  • Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82:221–240

    Article  PubMed  CAS  Google Scholar 

  • Six C, Worden AZ, Rodriguez F, Moreau H, Partensky F (2005) New insights into the nature and phylogeny of prasinophyte antenna proteins: Ostreococcus tauri, a case study. Mol Biol Evol 22:2217–2230

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • van Montfort RL, Basha EM, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  CAS  Google Scholar 

  • van Montfort RL, Slingsby C, Vierling E (2002) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Article  Google Scholar 

  • Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7:57–79

    PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Roles of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Waters ER (1995) The molecular evolution of the small heat shock proteins in plants. Genetics 141:785–795

    PubMed  CAS  Google Scholar 

  • Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463

    Article  PubMed  CAS  Google Scholar 

  • Waters ER, Vierling E (1999a) Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. Proc Natl Acad Sci USA 96:14394–14399

    Article  PubMed  CAS  Google Scholar 

  • Waters ER, Vierling E (1999b) The diversification of the cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16:127–139

    PubMed  CAS  Google Scholar 

  • Waters ER, Lee G, Viering E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Waters ERMH, Ahel I, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Stetter K, Short J, Noordewier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution, parasitism and the minimal genome. Proc Natl Acad Sci USA 100:12984–12988

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful for the helpful comments provided by two anonymous reviewers and by Dr. Linda Graham on early versions of the manuscript. This work was partially supported by a grant from the National Science Foundation (IBN:0313900) to E.R.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth R. Waters.

Additional information

Reviewing Editor: Dr. Rüdiger Cerff

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, E.R., Rioflorido, I. Evolutionary Analysis of the Small Heat Shock Proteins in Five Complete Algal Genomes. J Mol Evol 65, 162–174 (2007). https://doi.org/10.1007/s00239-006-0223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0223-7

Keywords

Navigation