Skip to main content
Log in

Dynamic Behavior of an Intrinsically Unstructured Linker Domain Is Conserved in the Face of Negligible Amino Acid Sequence Conservation

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Proteins or regions of proteins that do not form compact globular structures are classified as intrinsically unstructured proteins (IUPs). IUPs are common in nature and have essential molecular functions, but even a limited understanding of the evolution of their dynamic behavior is lacking. The primary objective of this work was to test the evolutionary conservation of dynamic behavior for a particular class of IUPs that form intrinsically unstructured linker domains (IULD) that tether flanking folded domains. This objective was accomplished by measuring the backbone flexibility of several IULD homologues using nuclear magnetic resonance (NMR) spectroscopy. The backbone flexibility of five IULDs, representing three kingdoms, was measured and analyzed. Two IULDs from animals, one IULD from fungi, and two IULDs from plants showed similar levels of backbone flexibility that were consistent with the absence of a compact globular structure. In contrast, the amino acid sequences of the IULDs from these three taxa showed no significant similarity. To investigate how the dynamic behavior of the IULDs could be conserved in the absence of detectable sequence conservation, evolutionary rate studies were performed on a set of nine mammalian IULDs. The results of this analysis showed that many sites in the IULD are evolving neutrally, suggesting that dynamic behavior can be maintained in the absence of natural selection. This work represents the first experimental test of the evolutionary conservation of dynamic behavior and demonstrates that amino acid sequence conservation is not required for the conservation of dynamic behavior and presumably molecular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the Second International Symposium on Information Theory, pp 267–281

  • Al-Lazikani B, Jung J, Xiang Z, Honig B (2001) Protein structure prediction. Curr Opin Chem Biol 5:51–56

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci USA 102:1430–1435

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Van de Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Software 7:1–12

    Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Bracken C, Carr PA, Cavanagh J, Palmer AG, 3rd (1999) Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J Mol Biol 285:2133–2146

    Article  PubMed  CAS  Google Scholar 

  • Bracken C (2001) NMR spin relaxation methods for characterization of disorder and folding in proteins. J Mol Graph Model 19:3–12

    Article  PubMed  CAS  Google Scholar 

  • Braun KA, Lao Y, He Z, Ingles CJ, Wold MS (1997) Role of protein-protein interactions in the function of replication protein A (RPA): RPA modulates the activity of DNA polymerase alpha by multiple mechanisms. Biochemistry 36:8443–8454

    Article  PubMed  CAS  Google Scholar 

  • Braun EL, Halpern AL, Nelson MA, Natvig DO (2000) Large-scale comparison of fungal sequence information: mechanisms of innovation in Neurospora crassa and gene loss in Saccharomyces cerevisiae. Genome Res 10:416–430

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Dunker AK (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104–110

    Article  PubMed  CAS  Google Scholar 

  • Buck M, Schwalbe H, Dobson CM (1996) Main-chain dynamics of a partially folded protein: 15N NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. J Mol Biol 257:669–683

    Article  PubMed  CAS  Google Scholar 

  • Buevich AV, Shinde UP, Inouye M, Baum J (2001) Backbone dynamics of the natively unfolded pro-peptide of subtilisin by heteronuclear NMR relaxation studies. J Biomol NMR 20:233–249

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1987) The evolution of protein structures. Cold Spring Harb Symp Quant Biol 52:399–405

    PubMed  CAS  Google Scholar 

  • Daughdrill GW, Ackerman J, Isern NG, Botuyan MV, Arrowsmith C, Wold MS, Lowry DF (2001) The weak interdomain coupling observed in the 70 kDa subunit of human replication protein A is unaffected by ssDNA binding. Nucleic Acids Res 29:3270–3276

    Article  PubMed  CAS  Google Scholar 

  • Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds) Protein folding handbook. Wiley-VCH, Darmstadt, pp 275–357

    Google Scholar 

  • Dayhoff M, Schwartz R, Orcutt B (1978) A model of evolutionary change in proteins. National Biomedical Research Foundation, Washington, DC

    Google Scholar 

  • Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127:476–477

    Article  PubMed  CAS  Google Scholar 

  • Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH (2005) Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA 102:14338–14343

    Article  PubMed  CAS  Google Scholar 

  • Drummond DA, Raval A, Wilke CO (2006) A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23:327–337

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    PubMed  CAS  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2001) Nuclear magnetic resonance methods for elucidation of structure and dynamics in disordered states. Methods Enzymol 339:258–270

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2002a) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60

    Google Scholar 

  • Dyson HJ, Wright PE (2002b) Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 62:311–340

    Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  PubMed  CAS  Google Scholar 

  • Farrow NA, Zhang O, Muhandiram R, Formankay JD, Kay LE (1995) A comparative study of the backbone dynamics of the folded and unfolded forms of an Sh3 domain. J Cell Biochem (Suppl 21B):44–44

  • Farrow NA, Zhang OW, Formankay JD, Kay LE (1995) Comparison of the backbone dynamics of a folded and an unfolded Sh3 domain existing in equilibrium in aqueous Buffer. Biochemistry 34:868–878

    Article  PubMed  CAS  Google Scholar 

  • Farrow NA, Zhang O, Forman-Kay JD, Kay LE (1997) Characterization of the backbone dynamics of folded and denatured states of an SH3 domain. Biochemistry 36:2390–402

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1997) An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol 46:101–111

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JR, Shortle D (1997a) Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J Mol Biol 268:158–169

    Google Scholar 

  • Gillespie JR, Shortle D (1997b) Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol 268:170–184

    Google Scholar 

  • Gutte B, Merrifield RB (1969) The total synthesis of an enzyme with ribonuclease A activity. J Am Chem Soc 91:501–502

    Article  PubMed  CAS  Google Scholar 

  • Harrison PM, Carriero N, Liu Y, Gerstein M (2003) A “polyORFomic” analysis of prokaryote genomes using disabled-homology filtering reveals conserved but undiscovered short ORFs. J Mol Biol 333:885–892

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    PubMed  CAS  Google Scholar 

  • Higgins J (2004) Introduction to modern nonparametric statistics. Brook/Cole-Thomson Learning, Pacific Grove, CA

    Google Scholar 

  • Ishibashi T, Kimura S, Furukawa T, Hatanaka M, Hashimoto J, Sakaguchi K (2001) Two types of replication protein A 70 kDa subunit in rice, Oryza sativa: molecular cloning, characterization, and cellular & tissue distribution. Gene 272:335–343

    Article  PubMed  CAS  Google Scholar 

  • Jacobs DM, Lipton AS, Isern NG, Daughdrill GW, Lowry DF, Gomes X, Wold MS (1999) Human replication protein A: global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker. J Biomol NMR 14:321–331

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  • Kay LE (1998) Protein dynamics from NMR. Biochem Cell Biol 76:145–152

    Article  PubMed  CAS  Google Scholar 

  • Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–8979

    Article  PubMed  CAS  Google Scholar 

  • Kendrew JC, Dickerson RE, Strandberg BE (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 angstrom resolution. Nature 206:757–763

    Google Scholar 

  • Kuang Z, Yao S, Keizer DW, Wang CC, Bach LA, Forbes BE, Wallace JC, Norton RS (2006) Structure, dynamics and heparin binding of the C-terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2). J Mol Biol 364(4):690–704

    Article  PubMed  CAS  Google Scholar 

  • Lane AN, Lefevre JF (1994) Nuclear magnetic resonance measurements of slow conformational dynamics in macromolecules. Methods Enzymol 239:596–619

    PubMed  CAS  Google Scholar 

  • Lefevre JF, Dayie KT, Peng JW, Wagner G (1996) Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry 35:2674–2686

    Article  PubMed  CAS  Google Scholar 

  • Lesk AM, Chothia C (1980) How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol 136:225–270

    Article  PubMed  CAS  Google Scholar 

  • Lesk AM, Levitt M, Chothia C (1986) Alignment of the amino acid sequences of distantly related proteins using variable gap penalties. Protein Eng 1:77–78

    Article  PubMed  CAS  Google Scholar 

  • Lin YL, Chen C, Keshav KF, Winchester E, Dutta A (1996) Dissection of functional domains of the human DNA replication protein complex replication protein A. J Biol Chem 271:17190–17198

    Article  PubMed  CAS  Google Scholar 

  • Longhese MP, Plevani P, Lucchini G (1994) Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol Cell Biol 14:7884–7890

    PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Mirsky AE, Pauling L (1936) On the structure of native, denatured, and coagulated proteins. Proc Natl Acad Sci USA 22:439–447

    Article  PubMed  CAS  Google Scholar 

  • Nuss JE, Patrick SM, Oakley GG, Alter GM, Robison JG, Dixon K, Turchi JJ (2005) DNA damage induced hyperphosphorylation of replication protein a. 1. Identification of novel sites of phosphorylation in response to DNA damage. Biochemistry 44:8428–8437

    Article  PubMed  CAS  Google Scholar 

  • Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44:1989–2000

    Article  PubMed  CAS  Google Scholar 

  • Olson KE, Narayanaswami P, Vise PD, Lowry DF, Wold MS, Daughdrill GW (2005) Secondary structure and dynamics of an intrinsically unstructured linker domain. J Biomol Struct Dyn 23:113–124

    PubMed  CAS  Google Scholar 

  • Palmer AG 3rd (1993) Dynamic properties of proteins from NMR spectroscopy. Curr Opin Biotechnol 4:385–391

    Article  PubMed  CAS  Google Scholar 

  • Patrick SM, Oakley GG, Dixon K, Turchi JJ (2005) DNA damage induced hyperphosphorylation of replication protein A. 2. Characterization of DNA binding activity, protein interactions, and activity in DNA replication and repair. Biochemistry 44:8438–8448

    Article  PubMed  CAS  Google Scholar 

  • Peng JW, Wagner G (1992) Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry 31:8571–8586

    Article  PubMed  CAS  Google Scholar 

  • Peng JW, Wagner G (1995) Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry 34:16733–16752

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Rossmann MP, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three dimensional Fourier synthesis at 5.5 angstrom resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  CAS  Google Scholar 

  • Petsko GA, Ringe D (2004) Protein structure and function. New Science Press, London

    Google Scholar 

  • Pontius BW (1993) Close encounters: why unstructured, polymeric domains can increase rates of specific macromolecular association. Trends Biochem Sci 18:181–186

    Article  PubMed  CAS  Google Scholar 

  • Shaiu WL, Hu T, Hsieh TS (1999) The hydrophilic, protease-sensitive terminal domains of eucaryotic DNA topoisomerases have essential intracellular functions. Pac Symp Biocomput:578–589

    Google Scholar 

  • Siew N, Fischer D (2003) Uravelling the ORFan puzzle. Comp Funct Genom 4:432–441

    Article  CAS  Google Scholar 

  • Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632

    Article  PubMed  CAS  Google Scholar 

  • Stineman RW (1980) A consistently well-behaved method of interpolation. Creative Comput 6:54–57

    Google Scholar 

  • Tekaia F, Yeramian E, Dujon B (2002) Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297:51–60

    Article  PubMed  CAS  Google Scholar 

  • Thorne JL, Goldman N, Jones DT (1996) Combining protein evolution and secondary structure. Mol Biol Evol 13:666–673

    PubMed  CAS  Google Scholar 

  • Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from N-15 NMR relaxation. J Am Chem Soc 117:12562–12566

    Article  CAS  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2003) Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 25:847–855

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    Article  PubMed  CAS  Google Scholar 

  • Umezu K, Sugawara N, Chen C, Haber JE, Kolodner RD (1998) Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148:989–1005

    PubMed  CAS  Google Scholar 

  • Uversky VN (2002a) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Google Scholar 

  • Uversky VN (2002b) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    Google Scholar 

  • vanHolde KE, Johnson CW, Ho SP (1998) Principles of physical biochemistry. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Vise PD, Baral B, Stancik AS, Lowry DF, Daughdrill GW (2007) Identifying long-range structure in the intrinsically unstructured transactivation domain of p53. Proteins Struct Funct Bioinform 67(3):526–530

    Article  CAS  Google Scholar 

  • Wagstaff BJ, Begun DJ (2005) Comparative genomics of accessory gland protein genes in Drosophila melanogaster and D. pseudoobscura. Mol Biol Evol 22:818–832

    Article  CAS  Google Scholar 

  • Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  PubMed  CAS  Google Scholar 

  • Wold MS, Kelly T (1988) Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci U S A 85:2523–2527

    Article  PubMed  CAS  Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

  • Yu J, Thorne JL (2006) Testing for spatial clustering of amino acid replacements within protein tertiary structure. J Mol Evol 62:682–692

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Holly Wichman, Dr. Jack Sullivan, and Dr. David Lowry for helpful discussions during the preparation of the manuscript. GWD and CJB are funded by NIH Grant P20 RR 16448 from the COBRE program of the National Center for Research Resources (NCRR). C.J.B is also funded by NIH Grant P20 RR 16454-02 from the INBRE program at NCRR. The NMR data presented in this publication were collected at the University of Idaho Structural Biology Core Facility. This facility is funded by NIH Grant P20 RR 16448 from the COBRE Program and P20 RR 16454-02 from the INBRE program. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Daughdrill.

Additional information

Reviewing editor: Dr. James Bull

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daughdrill, G.W., Narayanaswami, P., Gilmore, S.H. et al. Dynamic Behavior of an Intrinsically Unstructured Linker Domain Is Conserved in the Face of Negligible Amino Acid Sequence Conservation. J Mol Evol 65, 277–288 (2007). https://doi.org/10.1007/s00239-007-9011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9011-2

Keywords

Navigation