Skip to main content
Log in

The Phylogenetic Distribution of Non-CTCF Insulator Proteins Is Limited to Insects and Reveals that BEAF-32 Is Drosophila Lineage Specific

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2010

Abstract

Chromatin insulators are DNA sequences found in eukaryotes that may organize genomes into chromatin domains by blocking enhancer–promoter interactions and preventing heterochromatin spreading. Considering that insulators play important roles in organizing higher order chromatin structure and modulating gene expression, very little is known about their phylogenetic distribution. To date, six insulators and their associated proteins have been characterized, including Su(Hw), Zw5, CTCF, GAF, Mod(mdg4), and BEAF-32. However, all insulator proteins, with the exception of CTCF, which has also been identified in vertebrates and worms, have been exclusively described in Drosophila melanogaster. In this work, we have performed database searches utilizing each D. melanogaster insulator protein as a query to find orthologs in other organisms, revealing that except for CTCF all known insulator proteins are restricted to insects. In particular, the boundary element-associated factor of 32 kDa (BEAF-32), which binds to thousands of sites throughout the genome, was only found in the Drosophila lineage. Accordingly, we also found a significant bias of BEAF-32 binding sites in relation to transcription start sites (TSSs) in D. melanogaster but not in Anopheles gambiae, Apis mellifera, or Tribolium castaneum. These data suggest that DNA binding proteins such as BEAF-32 may have a dramatic impact in the genome of single evolutionary lineages. A more thorough evaluation of the phylogenetic distribution of insulator proteins will allow for a better understanding of whether the mechanism by which these proteins exert their function is conserved across phyla and their impact in genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Aravind L (2000) The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci 25:421–423

    Article  CAS  PubMed  Google Scholar 

  • Berglund A-C, Sjolund E, Ostund G, Sonnhammer ELL (2007) InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Res 36:D263–D266

    Article  PubMed  Google Scholar 

  • Bhaskar V, Courey AJ (2002) The MADF-BESS domain factor Dip3 potentiates synergistic activation by dorsal and twist. Gene 299:173–184

    Article  CAS  PubMed  Google Scholar 

  • Buchner K, Roth P, Schotta G, Krauss V, Saumweber H, Reuter G, Dorn R (2000) Genetic and molecular complexity of the position effect variegation modifier mod(mdg4) in Drosophila. Genetics 155:141–157

    CAS  PubMed  Google Scholar 

  • Bushey AM, Dorman ER, Corces VG (2008) Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell 32:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bushey AM, Ramos E, Corces VG (2009) Three subclasses of a Drosophila insulator show distinct and cell type-specific genomic distributions. Genes Dev 23:1338–1350

    Article  CAS  PubMed  Google Scholar 

  • Capelson M, Corces VG (2005) The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol Cell 20:105–116

    Article  CAS  PubMed  Google Scholar 

  • Clark KA, McKearin DM (1996) The Drosophila stonewall gene encodes a putative transcription factor essential for germ cell development. Development 122:937–950

    CAS  PubMed  Google Scholar 

  • Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh NS (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  Google Scholar 

  • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:197–201

    Article  Google Scholar 

  • Cutler G, Perry KM, Tjian R (1998) Adf-1 Is a nonmodular transcription factor that contains a TAF-binding Myb-like motif. Mol Cell Biol 18:2252–2261

    CAS  PubMed  Google Scholar 

  • Cuvier O, Hart C, Laemmli U (1998) Identificaiton of a class of chromatin boundary elements. Mol Cell Biol 18:7478–7486

    CAS  PubMed  Google Scholar 

  • Delattre M, Spierer A, Hulo N, Spierer P (2002) A new gene in Drosophila melanogaster, ravus, the phantom of the modifier of position-effect variegation Su(var)3–7. Int J Dev Biol 46:167–171

    CAS  PubMed  Google Scholar 

  • Emberly E, Blattes R, Schuettengruber B, Hennion M, Jiang N, Hart C, Kas E, Cuvier O (2008) BEAF regulates cell-cylce genes through the controlled deposition of H3K9 methylation marks into its conserved dual-core binding sites. PLoS Biol 6:2896–2910

    Article  CAS  PubMed  Google Scholar 

  • England B, Admon A, Tjian R (1992) Cloning of Drosophila transcription factor Adf-1 reveals homology to Myb oncoproteins. Proc Natl Acad Sci USA 89:683–687

    Article  CAS  PubMed  Google Scholar 

  • Gerasimova TI, Gdula DA, Gerasimov DV, Simonova O, Corces VG (1995) A Drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell 82:587–597

    Article  CAS  PubMed  Google Scholar 

  • Gerasimova TI, Lei EP, Bushey AM, Corces VG (2007) Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila. Mol Cell 28:761–772

    Article  CAS  PubMed  Google Scholar 

  • Gilbert MK, Tan YY, Hart CM (2006) The Drosophila boundary element-associated factors BEAF-32A and 32B affect chromatin structure. Genetics 173:1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch M (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  • Hart CM, Zhao K, Laemmli UK (1997) The scs’ boundary element: characterization of boundary element-associated factors. Mol Cell Biol 17:999–1009

    CAS  PubMed  Google Scholar 

  • Heger P, Marin B, Schierenberg E (2009) Loss of the insulator protein CTCF during nematode evolution. BMC Mol Biol 10:84

    Article  PubMed  Google Scholar 

  • Hirose F, Yamaguchi M, Handa H, Inomata Y, Matsukage A (1993) Novel 8-base pair sequence (Drosophila DNA replication-related element) and specific binding factor involved in the expression of Drosophila genes for DNA polymerase and proliferating cell nuclear antigen. J Biol Chem 268:2092–2099

    CAS  PubMed  Google Scholar 

  • Jiang N, Emberly E, Cuvier O, Hart CM (2009) Genome-wide mapping of BEAF binding sites in Drosophila links BEAF to transcription. Mol Cell Biol 29:3556–3568

    Article  CAS  PubMed  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW (2005a) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533

    Article  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW (2005b) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  PubMed  Google Scholar 

  • Kurshakova M, Maksimenko O, Golovnin A, Pulina M, Georgieva S, Georgiev P, Krasnov A (2007) Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol Cell 27:332–338

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12:1048–1059

    Article  CAS  PubMed  Google Scholar 

  • Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312:269–272

    Article  CAS  PubMed  Google Scholar 

  • Markstein M, Markstein P, Markstein V, Levine M (2002) Genome-wide analysis of clustered dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc Natl Acad Sci USA 99:763–768

    Article  CAS  PubMed  Google Scholar 

  • Mohan M, Bartkuhn M, Herold M, Philippen A, Heinl N, Bardenhagen I, Leers J, White RA, Renkawitz-Pohl R, Saumweber H, Renkawitz R (2007) The Drosophila insulator proteins CTCF and CP190 link enhancer blocking to body patterning. EMBO J 26:4203–4214

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Filippova G, Loukinov D, Pugacheva E, Chen Q, Smith ST, Munhall A, Grewe B, Bartkuhn M, Arnold R, Burker LJ, Renkawitz-Pohl R, Ohlsson R, Zhou J, Renkawitz R, Lobanenkov V (2005) CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator. EMBO Rep 6:165–170

    Article  CAS  PubMed  Google Scholar 

  • Ohler U, Guo-chun L, Niemann H, Rubin G (2002) Computational analysis of core promoters in the Drosophila genome. Genome Biol 3:research0087.1–0087.12

    Google Scholar 

  • Pai C-Y, Lei EP, Ghosh D, Corces VG (2004) The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell 16:737–748

    Article  CAS  PubMed  Google Scholar 

  • Pathak RU, Rangaraj N, Kallappagoudar S, Mishra K, Mishra RK (2007) Boundary element-associated factor 32B connects chromatin domains to the nuclear matrix. Mol Cell Biol 27:4796–4806

    Article  CAS  PubMed  Google Scholar 

  • Reuter G, Giarre M, Farah J, Gausz J, Spierer A, Spierer P (1990) Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature 344:219–223

    Article  CAS  PubMed  Google Scholar 

  • Smith ST, Wickramasinghe P, Olson A, Loukinov D, Lin L, Deng J, Xiong Y, Rux J, Sachidanandam R, Sun H, Lobanenkov V, Zhou J (2009) Genome wide ChIP-chip analyses reveal important roles for CTCF in Drosophila genome organization. Dev Biol 328:518–528

    Article  CAS  PubMed  Google Scholar 

  • Soeller WC, Oh CE, Kornberg TB (1993) Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol Cell Biol 13:7961–7970

    CAS  PubMed  Google Scholar 

  • Udvardy A, Maine E, Schedl P (1985) The 87A7 chromomere: identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J Mol Biol 185:341–358

    Article  CAS  PubMed  Google Scholar 

  • Wallace JA, Felsenfeld G (2007) We gather together: insulators and genome organization. Curr Opin Genet Dev 17:400–407

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  CAS  PubMed  Google Scholar 

  • West AG, Gaszner M, Felsenfeld G (2002) Insulators: many functions, many mechanisms. Genes Dev 16:271–288

    Article  PubMed  Google Scholar 

  • Zhao K, Hart CM, Laemmli UK (1995) Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81:879–889

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Labrador lab for valuable discussion and advice. This work was supported by U.S. Public Health Service Award MBC-0616081 from N.S.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Labrador.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00239-010-9339-x

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoborg, T.A., Labrador, M. The Phylogenetic Distribution of Non-CTCF Insulator Proteins Is Limited to Insects and Reveals that BEAF-32 Is Drosophila Lineage Specific. J Mol Evol 70, 74–84 (2010). https://doi.org/10.1007/s00239-009-9310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9310-x

Keywords

Navigation