Skip to main content
Log in

Selective forces for the origin of spliceosomes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

It has been proposed that eukaryotic spliceosomes evolved from bacterial group II introns via constructive neutral changes. However, a more likely interpretation is that spliceosomes and group II introns share a common undefined RNA ancestor—a proto-spliceosome. Although, the constructive neutral evolution may have probably played some roles in the development of complexity including the evolution of modern spliceosomes, in fact, the origin, losses and the retention of spliceosomes can be explained straight-forwardly mainly by positive and negative selection: (1) proto-spliceosomes evolved in the RNA world as a mechanism to excise functional RNAs from an RNA genome and to join non-coding information (ancestral to exons) possibly designed to be degraded. (2) The complexity of proto-spliceosomes increased with the invention of protein synthesis in the RNP world and they were adopted for (a) the addition of translation signal to RNAs via trans-splicing, and for (b) the exon-shuffling such as to join together exons coding separate protein domains, to translate them as a single unit and thus to facilitate the molecular interaction of protein domains needed to be assembled to functional catalytic complexes. (3) Finally, the spliceosomes were adopted for cis-splicing of (mainly) non-coding information (contemporary introns) to yield translatable mRNAs. (4) Spliceosome-negative organisms (i.e., prokaryotes) have been selected in the DNA–protein world to save a lot of energy. (5) Spliceosome-positive organisms (i.e., eukaryotes) have been selected, because they have been completely spliceosome-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

CNE:

Constructive neutral evolution

LECA:

Last eukaryotic common ancestor

LUCA:

Last universal common ancestor

RNP:

Ribonucleoprotein

References

  • Andersson SG, Alsmark C, Canbäck B, Davids W, Frank C, Karlberg O, Klasson L, Antoine-Legault B, Mira A, Tamas I (2002) Comparative genomics of microbial pathogens and symbionts. Bioinformatics 18:S17

    Article  PubMed  Google Scholar 

  • Audibert A, Weil D, Dautry F (2002) In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol Cell Biol 22:6706–6718

    Article  PubMed  CAS  Google Scholar 

  • Baurén G, Wieslander L (1994) Splicing of balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76:183–192

    Article  PubMed  Google Scholar 

  • Beyer AL, Osheim YN (1988) Splice site selection, rate of splicing and alternative splicing on nascent transcripts. Genes Dev 2:754–765

    Article  PubMed  CAS  Google Scholar 

  • Blake CC (1978) Do genes-in-pieces imply proteins-in-pieces? Nature 273:267

    Article  Google Scholar 

  • Boerlijst MC, Hogeweg P (1991) Spiral wave structures in prebiotic evolution—hypercycles stable against parasites. Phys D 48:17–28

    Article  Google Scholar 

  • Cech TR (2011) The RNA world in context. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a006742

  • Collins L, Penny D (2005) Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1993) On the evolution of RNA editing. Trends Genet 9:265–268

    Article  PubMed  CAS  Google Scholar 

  • Derelle R, Momose T, Manuel M, Da Silva C, Wincker P, Houliston E (2010) Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa. RNA 16:696–707

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272:581–582

    Article  Google Scholar 

  • Doolittle WF, Lukeš J, Archibald JM, Keeling PJ, Gray MW (2011) Comment on “Does constructive neutral evolution play an important role in the origin of cellular complexity?”. BioEssays 33:427–429

    Article  PubMed  Google Scholar 

  • Douris V, Telford MJ, Averof M (2010) Evidence for multiple independent origins of trans-splicing in metazoa. Mol Biol Evol 27:684–693

    Article  PubMed  CAS  Google Scholar 

  • Fedorova O, Solem A, Pyle AM (2010) Protein-facilitated folding of group II intron ribozymes. J Mol Biol 397:799–813

    Article  PubMed  CAS  Google Scholar 

  • Flegontov P, Gray MW, Burger G, Lukeš J (2011) Gene fragmentation: a key to mitochondrial genome evolution in euglenozoa? Curr Genet 57:225–232

    Article  PubMed  CAS  Google Scholar 

  • Forterre P (1995) Thermoreduction, a hypothesis for the origin of prokaryotes. C R Acad Sci Paris Life Sci 318:414–422

    Google Scholar 

  • Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532

    Article  PubMed  CAS  Google Scholar 

  • Forterre P (2005) Two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie 87:793–803

    Article  PubMed  CAS  Google Scholar 

  • Forterre P (2006) Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci USA 103:3669–3674

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W, de Souza SJ (1999) Introns and the RNA world. In: Gesteland RF, Cech TR, Atkins RF (eds) The RNA world, the nature of modern RNA suggests a prebiotic RNA World, vol. 37, 2nd edn. CSHL Press, New York, pp 221–231

  • Gray MW, Lukeš J, Archibald JM, Keeling PJ, Doolitle WF (2010) Cell biology. Irremediable complexity? Science 12:920–921

    Article  Google Scholar 

  • Hastings KEM (2005) SL trans-splicing: easy come or easy go? Trends Genet 21:240–247

    Article  PubMed  CAS  Google Scholar 

  • Jeffares DC, Poole AM, Penny D (1998) Relics from RNA world. J Mol Evol 46:18–36

    Article  PubMed  CAS  Google Scholar 

  • Kessler O, Jiang Y, Chasin LA (1993) Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Mol Cell Biol 13:6211–6222

    PubMed  CAS  Google Scholar 

  • Kurland CG, Canbäck B, Berg OG (2007) The origins of modern proteomes. Biochimie 89:1454–1463

    Article  PubMed  CAS  Google Scholar 

  • Lang KM, Spritz RA (1987) In vitro splicing pathways of pre-mRNAs containing multiple intervening sequences. Mol Cell Biol 7:3428–3437

    PubMed  CAS  Google Scholar 

  • Lukeš J, Leander BS, Keeling PJ (2009) Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc Natl Acad Sci USA 106:9963–9970

    Google Scholar 

  • Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63:528–537

    Article  PubMed  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer, Sunderland

    Google Scholar 

  • Martínez-Calvillo S, Vizuet-de-Rueda JC, Florencio-Martínez LE, Manning-Cela RG, Figueroa-Angulo EE (2010) Gene expression in trypanosomatid parasites. J Biomed Biotech 2010:525241

    Article  Google Scholar 

  • Marz M, Vanzo N, Stadler PF (2010) Temperature-dependent structural variability of RNAs: spliced leader RNAs and their evolutionary history. J Bioinform Comput Biol 8:1–17

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi AK, Ernst NL, Domingo GJ, Fleck M, Salavati R, Stuart KD (2006) Compositionally and functionally distinct editosomes in Trypanosoma brucei. RNA 2:1038–1049

    Article  Google Scholar 

  • Penny D, Hoeppner MP, Poole AM, Jeffares DC (2009) An overview of the introns-first theory. J Mol Evol 69:527–540

    Article  PubMed  CAS  Google Scholar 

  • Poole AM, Logan DT (2005) Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol Biol Evol 22:1444–1455

    Article  PubMed  CAS  Google Scholar 

  • Poole AM, Jeffares D, Penny D (1998) The path from RNA world. J Mol Evol 46:1–17

    Article  PubMed  CAS  Google Scholar 

  • Poole AM, Jeffares D, Penny D (1999) Prokaryotes, the new kids on the block. BioEssays 21:880–889

    Article  PubMed  CAS  Google Scholar 

  • Pyle AM, Fedorova O, Waldsich C (2007) Folding of group II introns: a model for large multidomain RNAs? Trends Biochem Sci 32:251

    Article  Google Scholar 

  • Roitzsch M, Pyle AM (2009) The linear form of group II intron catalyzes efficient autocatalytic reverse splicing, establishing a potential for mobility. RNA 15:473–482

    Article  PubMed  CAS  Google Scholar 

  • Sachs JL, Bull JJ (2005) Experimental evolution of conflict mediation between genomes. Proc Natl Acad Sci USA 102:390–395

    Article  PubMed  CAS  Google Scholar 

  • Schmidt U, Podar M, Stahl U, Perlman PS (1996) Mutations of the two-nucleotide bulge of D5 of a group II intron block splicing in vitro and in vivo: phenotypes and suppressor mutations. RNA 2:1161–1172

    PubMed  CAS  Google Scholar 

  • Singh J, Padgett RA (2009) Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 16:1128–1133

    Article  PubMed  CAS  Google Scholar 

  • Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49:169–181

    Article  PubMed  CAS  Google Scholar 

  • Valadkhan S, Jaladat Y (2010) The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics 10:4128–4141

    Article  PubMed  CAS  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323

    Article  PubMed  CAS  Google Scholar 

  • Vesteg M, Krajčovič J (2008) Origin of eukaryotic cells as a symbiosis of parasitic α-proteobacteria in the periplasm of two-membrane-bounded sexual pre-karyotes. Commun Integr Biol 1:104–113

    Article  PubMed  CAS  Google Scholar 

  • Vesteg M, Krajčovič J (2011) The falsifiability of the models for the origin of eukaryotes. Curr Genet 57:367–390

    Article  PubMed  CAS  Google Scholar 

  • Vesteg M, Vacula R, Burey S, Löffelhardt W, Drahovská H, Martin W, Krajčovič J (2009) Expression of nucleus-encoded genes for chloroplast proteins in the flagellate Euglena gracilis. J Eukaryot Microbiol 56:159–166

    Article  PubMed  CAS  Google Scholar 

  • Vesteg M, Vacula R, Steiner JM, Mateášiková B, Löffelhardt W, Brejová B, Krajčovič J (2010) A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res 17:223–231

    Article  PubMed  CAS  Google Scholar 

  • Wernegreen JJ (2005) For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr Opin Genet Dev 15:572–583

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (2001) Translation: in retrospect and prospect. RNA 7:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747

    Article  PubMed  CAS  Google Scholar 

  • Woolfit M, Bromham L (2003) Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol 20:1545–1555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant VEGA 1/0416/09 from the Ministry of Education of the Slovak Republic to J. K., and is the result of the project implementation: “the improvement of centre of excellence for exploitation of informational biomacromolecules in disease prevention and improvement of quality of life,” ITMS 26240120027, supported by the Research and Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Vesteg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesteg, M., Šándorová, Z. & Krajčovič, J. Selective forces for the origin of spliceosomes. J Mol Evol 74, 226–231 (2012). https://doi.org/10.1007/s00239-012-9494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9494-3

Keywords

Navigation