Skip to main content
Log in

Intravascular ultrasound for endovascular precision in pediatrics

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Intravascular ultrasound (IVUS) is used as a diagnostic adjunct to angiography and has become a valuable diagnostic and interventional tool with a well-documented safety profile. The American College of Cardiology and the European Society of Cardiology have published guidelines regarding the use of IVUS in the setting of percutaneous coronary intervention. IVUS has gained popularity in the interventional radiology (IR) community in recent years; however, there are no consensus guidelines for utilization. Furthermore, IVUS remains an infrequently used modality in pediatric IR, likely because of unfamiliarity with the equipment and techniques, as well as concerns over the compatibility of these instruments with pediatric anatomy. IVUS can be safely used as a helpful and sometimes necessary tool for pediatric interventions in appropriately selected patients. The utility of IVUS for reducing both fluoroscopy time and contrast agent volume makes it particularly valuable in pediatric practice. This article presents an overview of both the rotational and phased-array IVUS types and an in-depth discussion on the most common applications of these techniques in the pediatric setting across multiple procedure categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yock PG, Linker DT, Thapilyal HV et al (1988) Real-time two-dimensional catheter ultrasound: a new technique for high-resolution intravascular imaging. J Am Coll Cardio 11:130A

    Google Scholar 

  2. Belkin N, Jackson BM, Foley PJ et al (2020) The use of intravascular ultrasound in the treatment of type B aortic dissection with thoracic endovascular aneurysm repair is associated with improved long-term survival. J Vasc Surg 72:490–497

    Article  PubMed  Google Scholar 

  3. Tsujita K, Maehara A, Mintz GS et al (2008) Comparison of angiographic and intravascular ultrasonic detection of myocardial bridging of the left anterior descending coronary artery. Am J Cardiol 102:1608–1613

    Article  PubMed  Google Scholar 

  4. Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103:604–616

    Article  CAS  PubMed  Google Scholar 

  5. Shlofmitz E, Kerndt CC, Parekh A, Khalid N (2020) Intravascular ultrasound. StatPearls, Treasure Island. http://www.ncbi.nlm.nih.gov/books/NBK537019/. Accessed 21 Sep 2021

  6. Levine GN, Bates ER, Blankenship JC et al (2011) 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines and the Society for Cardiovascular Angiography and Interventions. JACC 58:e44-122

    Article  PubMed  Google Scholar 

  7. Neumann J, Sousa-Uva M, Ahlsson A et al (2019) 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 40:87–165

    Article  PubMed  Google Scholar 

  8. Sheikh AB, Anantha-Narayanan M, Smolderen KG et al (2020) Utility of intravascular ultrasound in peripheral vascular interventions: systematic review and meta-analysis. Vasc Endovasc Surg 54:413–422

    Article  Google Scholar 

  9. Elgendy IY, Mahmoud AN, Elgendy AY, Bavry AA (2016) Outcomes with intravascular ultrasound-guided stent implantation: a meta-analysis of randomized trials in the era of drug-eluting stents. Circ Cardiovasc Interv 9:e003700

    Article  CAS  PubMed  Google Scholar 

  10. Ahn J-M, Kang S-J, Yoon S-H et al (2014) Meta-analysis of outcomes after intravascular ultrasound–guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am J Cardiol 113:1338–1347

    Article  PubMed  Google Scholar 

  11. Loffroy R, Falvo N, Galland C et al (2020) Intravascular ultrasound in the endovascular treatment of patients with peripheral arterial disease: current role and future perspectives. Front Cardiovasc Med 7:551861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marteslo JP, Makary MS, Khabiri H et al (2020) Intravascular ultrasound for the peripheral vasculature — current applications and new horizons. Ultrasound Med Biol 46:216–224

    Article  PubMed  Google Scholar 

  13. Petersen B, Uchida BT, Timmermans H et al (2001) Intravascular US-guided direct intrahepatic portacaval shunt with a PTFE-covered stent-graft: feasibility study in swine and initial clinical results. J Vasc Interv Radiol 12:475–486

    Article  CAS  PubMed  Google Scholar 

  14. Pillai A, Andring B, Iyamu I (2016) Conventional vs. intravascular ultrasound (IVUS) guided transjugular intrahepatic portosystemic shunt (TIPS) creation: a comparison of success, efficiency, complications, and radiation dose. J Vasc Interv Radiol 27:S194

    Article  Google Scholar 

  15. Monroe EJ, Shin DS, Shivaram GM, Koo KSH (2017) Pediatric transjugular intrahepatic portosystemic shunts. Dig Dis Interv 1:277–285

    Article  Google Scholar 

  16. Koo KSH, Lamar DL, Shaw DWW et al (2018) Catheter-directed thrombolysis for portal vein thrombosis in children: a case series. J Vasc Interv Radiol 29:1578–1583

    Article  PubMed  Google Scholar 

  17. Hodgkiss-Harlow K, Back MR et al (2012) Technical factors affecting the accuracy of bedside IVC filter placement using intravascular ultrasound. Vasc Endovasc Surg 46:293–299

    Article  Google Scholar 

  18. McDevitt JL, Srinivasa RN, Hage AN et al (2019) Total endovenous recanalization and stent reconstruction for naïve non-inferior vena cava filter-associated chronic iliocaval occlusive disease: placement of 352 venous stents in 69 debilitated patients. Vasc Med 24:349–358

    Article  PubMed  Google Scholar 

  19. Chick JFB, Jo A, Meadows JM et al (2017) Endovascular iliocaval stent reconstruction for inferior vena cava filter–associated iliocaval thrombosis: approach, technical success, safety, and two-year outcomes in 120 patients. J Vasc Interv Radiol 28:933–939

    Article  PubMed  Google Scholar 

  20. McDevitt JL, Srinivasa RN, Gemmete JJ et al (2019) Approach, technical success, complications, and stent patency of sharp recanalization for the treatment of chronic venous occlusive disease: experience in 123 patients. Cardiovasc Intervent Radiol 42:205–212

    Article  PubMed  Google Scholar 

  21. Chick JFB, Roush BB, Khaja MS et al (2017) Transbiliary intravascular ultrasound-guided diagnostic biopsy of an inaccessible pancreatic head mass. Radiol Case Rep 12:323–326

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yan F, Rajah G, Ding Y et al (2019) Safety and efficacy of intravascular ultrasound as an adjunct to stenting for cerebral venous sinus stenosis-induced idiopathic intracranial hypertension: a pilot study. J Neurosurg 132:749–754

    Article  PubMed  Google Scholar 

  23. Clark DJ, Lessio S, O’Donoghue M et al (2004) Safety and utility of intravascular ultrasound-guided carotid artery stenting. Catheter Cardiovasc Interv 63:355–362

    Article  PubMed  Google Scholar 

  24. Enriquez A, Saenz LC, Rosso R et al (2018) Use of intracardiac echocardiography in interventional cardiology: working with the anatomy rather than fighting it. Circulation 137:2278–2294

    Article  PubMed  Google Scholar 

  25. Raju S, Buck WJ, Crim W, Jayaraj A (2018) Optimal sizing of iliac vein stents. Phlebology 33:451–457

    Article  PubMed  Google Scholar 

  26. Gill AE, Ciszak T, Braun H, Hawkins CM (2017) Intravascular ultrasound versus digital subtraction angiography: direct comparison of intraluminal diameter measurements in pediatric and adolescent imaging. Pediatr Radiol 47:450–457

    Article  PubMed  Google Scholar 

  27. Manninen HI, Räsänen H (2000) Intravascular ultrasound in interventional radiology. Eur Radiol 10:1754–1762

    Article  CAS  PubMed  Google Scholar 

  28. Zhao X, Zhao L, Wu L et al (2020) Efficacy of percutaneous transluminal renal angioplasty for pediatric renovascular hypertension: a meta-analysis. Zhonghua Er Ke Za Zhi 58:661–667

    CAS  PubMed  Google Scholar 

  29. McDevitt JL, Srinivasa RN, Hage AN et al (2019) Lower extremity endovenous reconstruction for symptomatic occlusive disease in pediatric patients: techniques, clinical outcomes, and long-term stent patencies. Pediatr Radiol 49:808–818

    Article  PubMed  Google Scholar 

  30. Montminy ML, Thomasson JD, Tanaka GJ et al (2019) A comparison between intravascular ultrasound and venography in identifying key parameters essential for iliac vein stenting. J Vasc Surg Venous Lymphat Disord 7:801–807

    Article  PubMed  Google Scholar 

  31. Aslesen A (2019) Assessing venous disease for optimal endovascular stent placement. BackTable podcast. https://www.backtable.com/post/endovascular-stent-placement-venous-disease. Accessed 21 Sep 2021

  32. Sherman TF (1981) On connecting large vessels to small. The meaning of Murray’s law. J Gen Physiol 78:431–453

    Article  CAS  PubMed  Google Scholar 

  33. Hager ES, Yuo T, Tahara R et al (2013) Outcomes of endovascular intervention for May-Thurner syndrome. J Vasc Surg Venous Lymphat Disord 1:270–275

    Article  PubMed  Google Scholar 

  34. Majdalany BS, Khaja MS, Williams DM (2017) Intravascular ultrasound-guided intervention for May-Thurner syndrome. Semin Interv Radiol 34:201–207

    Article  Google Scholar 

  35. Wu Z, Zheng X, He Y et al (2016) Stent migration after endovascular stenting in patients with nutcracker syndrome. J Vasc Surg Venous Lymphat Disord 4:193–199

    Article  PubMed  Google Scholar 

  36. Cronan JC, Hawkins CM, Kennedy SS et al (2021) Endovascular management of nutcracker syndrome in an adolescent patient population. Pediatr Radiol 51:1487–1496

    Article  PubMed  Google Scholar 

  37. Syed MI, Yu B, Akhter T, Shaikh A (2011) Renal vein stenting via the right internal jugular approach with a provocative Valsalva maneuver to reduce the risk of stent migration. Perspect Vasc Surg Endovasc Ther 23:268–271

    Article  PubMed  Google Scholar 

  38. Petersen BD, Clark TWI (2008) Direct intrahepatic portocaval shunt. Tech Vasc Interv Radiol 11:230–234

    Article  PubMed  Google Scholar 

  39. Kew J, Davies RP (2004) Intravascular ultrasound guidance for transjugular intrahepatic portosystemic shunt procedure in a swine model. Cardiovasc Intervent Radiol 27:38–41

    Article  PubMed  Google Scholar 

  40. Kao SD, Morshedi MM, Narsinh KH et al (2016) Intravascular ultrasound in the creation of transhepatic portosystemic shunts reduces needle passes, radiation dose, and procedure time: a retrospective study of a single-institution experience. J Vasc Interv Radiol 27:1148–1153

    Article  PubMed  Google Scholar 

  41. Bertino F, Hawkins CM, Shivaram G et al (2019) Technical feasibility and clinical effectiveness of transjugular intrahepatic portosystemic shunt creation in pediatric and adolescent patients. J Vasc Interv Radiol 30:178–186

    Article  PubMed  Google Scholar 

  42. Chamarthy MR, Anderson ME, Pillai AK, Kalva SP (2016) Thrombolysis and transjugular intrahepatic portosystemic shunt creation for acute and subacute portal vein thrombosis. Tech Vasc Interv Radiol 19:42–51

    Article  PubMed  Google Scholar 

  43. Thakrar PD, Petersen BD, Kaufman JA (2013) Intravascular ultrasound for transvenous interventions. Tech Vasc Interv Radiol 16:161–167

    Article  PubMed  Google Scholar 

  44. RiChard J, Thornburg B, Desai S et al (2019) Intracardiac echocardiography (ICE)-guided external iliac transvenous needle biopsy of an extravascular retroperitoneal mass. Int J Clin Ski 13:259–263

    Google Scholar 

  45. Swenson C, Martin JG, Jaffe T et al (2021) Intravascular ultrasound guided transvenous biopsy of abdominal and pelvic targets difficult to access by percutaneous needle biopsy: technique and initial clinical experience. J Vasc Interv Radiol 32:1310–1318

    Article  PubMed  Google Scholar 

  46. Kaufman C, Gaumond J, Kaufman J (2017) Transjugular liver biopsy following orthotopic whole liver transplantation: challenges and solutions. A pictorial essay. J Clin Interv Radiol 1:107–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Monroe.

Ethics declarations

Conflicts of interest

Jeffrey Forris Beecham Chick is a consultant and speaker for Inari Medical, Guerbet, C. R. Bard, Argon Medical Devices and Boston Scientific. Eric J. Monroe is a scientific adviser and speaker for Biogen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weaver, J.J., Shin, D.S., Chick, J.F.B. et al. Intravascular ultrasound for endovascular precision in pediatrics. Pediatr Radiol 52, 559–569 (2022). https://doi.org/10.1007/s00247-021-05220-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05220-7

Keywords

Navigation