Skip to main content

Advertisement

Log in

Diversity and Abundance of Oil-Degrading Bacteria and Alkane Hydroxylase (alkB) Genes in the Subtropical Seawater of Xiamen Island

  • Environment Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this report, the diversity of oil-degrading bacteria and alkB gene was surveyed in the seawater around Xiamen Island. Forty-four isolates unique in 16S rRNA sequence were obtained after enrichment with crude oil. Most of the obtained isolates exhibited growth with diesel oil and crude oil. alkB genes were positively detected in 16 isolates by degenerate polymerase chain reaction (PCR). And for the first time, alkB genes were found in bacteria of Gallaecimonas, Castellaniella, Paracoccus, and Leucobacter. Additional 29 alkB sequences were retrieved from genomic DNA of the oil-degrading communities. Phylogenetic analysis showed that the obtained alkB genes formed five groups, most of which exhibited 60–80% similarity at the amino acid level with sequences retrieved from the GenBank database. Furthermore, the abundance of alkB genes in seawater was examined by real-time PCR. The results showed that alkB genes of each group in situ ranged from about 3 × 103 to 3 × 105 copies L−1, with the homologs of Alcanivorax and Pseudomonas being the most predominant. Bacteria of Alcanivorax, Acinetobacter, and Pseudomonas are important oil degraders in this area; while those frequently reported in other area, like Oleiphilus spp., Oleispira spp., and Thalassolituus spp. were not found in our report. These results indicate that bacteria and genes involved in oil degradation are quite diverse, and may have restriction in geographic distribution in some species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607

    Article  CAS  PubMed  Google Scholar 

  2. Golyshin PN, Martins Dos Santos VA, Kaiser O, Ferrer M, Sabirova YS, Lunsdorf H, Chernikova TN, Golyshina OV, Yakimov MM, Puhler A, Timmis KN (2003) Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106:215–220

    Article  CAS  PubMed  Google Scholar 

  3. Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  4. Heiss-Blanquet S, Benoit Y, Marechaux C, Monot F (2005) Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J Appl Microbiol 99:1392–1403

    Article  CAS  PubMed  Google Scholar 

  5. Islam KS, Rahman MM, Eda LEH (2009) Pollution status and sustainable management of Xiamen Bay in China: a brief review. Int J Ocean Syst Manage 1:155–168

    Article  Google Scholar 

  6. Kuhn E, Bellicanta GS, Pellizari VH (2009) New alk genes detected in Antarctic marine sediments. Environ Microbiol 11:669–673

    Article  CAS  PubMed  Google Scholar 

  7. Kloos K, Munch JC, Schloter M (2006) A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 66:486–496

    Article  CAS  PubMed  Google Scholar 

  8. Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186

    Article  CAS  PubMed  Google Scholar 

  9. Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333

    Article  CAS  PubMed  Google Scholar 

  10. Maier T, Forster HH, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286:652–658

    Article  CAS  PubMed  Google Scholar 

  11. Marin MM, Smits TH, van Beilen JB, Rojo F (2001) The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol 183:4202–4209

    Article  CAS  PubMed  Google Scholar 

  12. Ou S, Zheng J, Richardson BJ, Lam PK (2004) Petroleum hydrocarbons and polycyclic aromatic hydrocarbons in the surficial sediments of Xiamen Harbour and Yuan Dan Lake, China. Chemosphere 56:107–112

    Article  CAS  PubMed  Google Scholar 

  13. Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol 52:523–532

    Article  CAS  PubMed  Google Scholar 

  14. Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia AM (2008) Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 104:251–259

    CAS  PubMed  Google Scholar 

  15. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490

    Article  CAS  PubMed  Google Scholar 

  16. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  17. Sei K, Sugimoto Y, Mori K, Maki H, Kohno T (2003) Monitoring of alkane-degrading bacteria in a sea-water microcosm during crude oil degradation by polymerase chain reaction based on alkane-catabolic genes. Environ Microbiol 5:517–522

    Article  CAS  PubMed  Google Scholar 

  18. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochem 33:12787–12794

    Article  CAS  Google Scholar 

  19. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  CAS  PubMed  Google Scholar 

  20. Stapleton RD, Ayler GS (1998) Assessment of the microbiological potential for the natural attenuation of petroleum hydrocarbons in a shallow aquifer system. Microbial Ecol: 36:49–361

    Article  Google Scholar 

  21. Smits TH, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in gram-negative and gram-positive strains. Environ Microbiol 1:307–317

    Article  CAS  PubMed  Google Scholar 

  22. Tani A, Ishige T, Sakai Y, Kato N (2001) Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol 183:1819–1823

    Article  CAS  PubMed  Google Scholar 

  23. Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332

    Article  CAS  PubMed  Google Scholar 

  24. van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174

    Article  PubMed  Google Scholar 

  25. van Beilen JB, Smits THM, Whyte LG, Schorcht S, Röthlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002) Alkane hydroxylases in gram-positive strains. Environ Microbiol 4:676–682

    Article  PubMed  Google Scholar 

  26. van Beilen JB, Duetz WA, Schmid A, Witholt B (2003) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177

    Article  PubMed  Google Scholar 

  27. van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  28. van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  PubMed  Google Scholar 

  29. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  PubMed  Google Scholar 

  30. Vomberg A, Klinner U (2000) Distribution of alkB genes within n alkane-degrading bacteria. J Appl Microbiol 89:339–348

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Wang W, Lai Q, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12(5):1230–1242

    Article  CAS  PubMed  Google Scholar 

  32. Wasmund K, Burns KA, Kurtboke DI, Bourne DG (2009) Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Appl Environ Microbiol 75:7391–7398

    Article  CAS  PubMed  Google Scholar 

  33. WEF AA (1998) Standard Methods for the Examination of Water and Wastewater (20th ed.), APHA-AWWA-WEF, Washington, DC

  34. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  CAS  PubMed  Google Scholar 

  35. Whyte LG, Schultz A, Van Beilen JB, Luz AP, Pellizari D, Labbé D, Greer CW (2002) Prevalence of alkane monooxygenase genes in arctic and antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    CAS  PubMed  Google Scholar 

  36. Whyte LG, Smits TH, Labbe D, Witholt B, Greer CW, van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (30670051), the Science and Technology Program of Fujian Province of China (2009H0029), and the China Scholarship Council Program (2008631036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongze Shao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Multiple alignment of each alkB group to show the conserved regions used for Q-PCR primer design. Q-PCR primers of each group were designed based on the two conserved regions labeled in grey pane. a. Group I-like alkB gene; b. Group II-like alkB gene; c. Group III-like alkB gene; d. Group IV-like alkB gene; e. Group V-like alkB gene. (GIF 750 kb)

High Resolution (TIFF 29953 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Wang, L. & Shao, Z. Diversity and Abundance of Oil-Degrading Bacteria and Alkane Hydroxylase (alkB) Genes in the Subtropical Seawater of Xiamen Island. Microb Ecol 60, 429–439 (2010). https://doi.org/10.1007/s00248-010-9724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9724-4

Keywords

Navigation