Skip to main content

Advertisement

Log in

Functional Guilds, Community Assembly, and Co-occurrence Patterns of Fungi in Metalliferous Mine Tailings Ponds in Mainland China

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Metalliferous mine tailings ponds are generally characterized by low levels of nutrient elements, sustained acidic conditions, and high contents of toxic metals. They represent one kind of extreme environments that are believed to resemble the Earth’s early environmental conditions. There is increasing evidence that the diversity of fungi inhabiting mine tailings ponds is much higher than previously thought. However, little is known about functional guilds, community assembly, and co-occurrence patterns of fungi in such habitats. As a first attempt to address this critical knowledge gap, we employed high-throughput sequencing to characterize fungal communities in 33 mine tailings ponds distributed across 18 provinces of mainland China. A total of 5842 fungal phylotypes were identified, with saprotrophic fungi being the major functional guild. The predictors of fungal diversity in whole community and sub-communities differed considerably. Community assembly of the whole fungal community and individual functional guilds were primarily governed by stochastic processes. Total soil nitrogen and total phosphorus mediated the balance between stochastic and deterministic processes of the fungal community assembly. Co-occurrence network analysis uncovered a high modularity of the whole fungal community. The observed main modules largely consisted of saprotrophic fungi as well as various phylotypes that could not be assigned to known functional guilds. The richness of core fungal phylotypes, occupying vital positions in co-occurrence network, was positively correlated with edaphic properties such as soil enzyme activity. This indicates the important roles of core fungal phylotypes in soil organic matter decomposition and nutrient cycling. These findings improve our understanding of fungal ecology of extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The sequences obtained in this study are available at EMBL under accession number PRJEB53154.

References

  1. Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2:11–26. https://doi.org/10.1046/j.1462-2920.2000.00071.x

    Article  CAS  PubMed  Google Scholar 

  2. van Kranendonk MJ, Pirajno F (2004) Geochemistry of metabasalts and hydrothermal alteration zones associated with c. 3.45 Ga chert and barite deposits: implications for the geological setting of the Warrawoona Group, Pilbara Craton. Australia Geochem Explor Env A 4:253–278. https://doi.org/10.1144/1467-7873/04-205

    Article  Google Scholar 

  3. Wakelin SA, Anand RR, Reith F, Gregg AL, Noble RR, Goldfarb KC, Andersen GL, DeSantis TZ, Piceno YM, Brodie EL (2012) Bacterial communities associated with a mineral weathering profile at a sulphidic mine tailings dump in arid Western Australia. FEMS Microbiol Ecol 79:298–311. https://doi.org/10.1111/j.1574-6941.2011.01215.x

    Article  CAS  PubMed  Google Scholar 

  4. Wong JWC, Ip CM, Wong MH (1998) Acid-forming capacity of lead-zinc mine tailings and its implications for mine rehabilitation. Environ Geochem Health 20:149–155. https://doi.org/10.1023/A:1006589124204

    Article  CAS  Google Scholar 

  5. Shu WS, Huang LN (2022) Microbial diversity in extreme environments. Nat Rev Microbiol 20:219–235. https://doi.org/10.1038/s41579-021-00648-y

    Article  CAS  PubMed  Google Scholar 

  6. Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, Wilkins MJ, Williams KH, Singh A, Banfield JF (2016) Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol 18:159–173. https://doi.org/10.1111/1462-2920.12930

    Article  CAS  PubMed  Google Scholar 

  7. Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK (2019) A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10:2369. https://doi.org/10.1038/s41467-019-10373-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PJ (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  9. Boddy L, Frankland J, van West P (2007) Ecology of saprotrophic basidiomycetes, 1st edn. Elsevier, London, pp 197–209. https://doi.org/10.1016/S0275-0287(08)80015-X

  10. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415. https://doi.org/10.1038/ng.3223

    Article  CAS  PubMed  Google Scholar 

  11. Bunn RA, Simpson DT, Bullington LS, Lekberg Y, Janos DP (2019) Revisiting the “direct mineral cycling” hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME J 13:1891–1898. https://doi.org/10.1038/s41396-019-0403-2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang JT, Eisenhauer N, Singh BK, Maestre FT (2020) The proportion of soil-borne pathogens increases with warming at the global scale. Nat Clim Change 10:550–554. https://doi.org/10.1038/s41558-020-0759-3

    Article  Google Scholar 

  13. Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA (2014) Untangling the fungal niche: the trait-based approach. Front Microbiol 5:579. https://doi.org/10.3389/fmicb.2014.00579

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x

    Article  CAS  PubMed  Google Scholar 

  15. Jiao S, Chen WM, Wei GH (2021) Core microbiota drive functional stability of soil microbiome in reforestation ecosystems. Glob Chang Biol 28:1038–1047. https://doi.org/10.1111/gcb.16024

    Article  CAS  PubMed  Google Scholar 

  16. Jiao S, Lu YH (2020) Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Glob Chang Biol 26:4506–4520. https://doi.org/10.1111/gcb.15130

    Article  PubMed  Google Scholar 

  17. Zhang ZF, Pan YP, Liu Y, Li M (2021) High-level diversity of basal fungal lineages and the control of fungal community assembly by stochastic processes in mangrove sediments. Appl Environ Microbiol 87:e0092821. https://doi.org/10.1128/AEM.00928-21

    Article  PubMed  Google Scholar 

  18. Jiao S, Yang YF, Xu YQ, Zhang J, Lu YH (2020) Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J 14:202–216. https://doi.org/10.1038/s41396-019-0522-9

    Article  PubMed  Google Scholar 

  19. Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manage 132:129–134. https://doi.org/10.1016/j.jenvman.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  20. Yu P, Sun Y, Huang Z, Zhu F, Sun Y, Jiang L (2020) The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. J Hazard Mater 381:121203. https://doi.org/10.1016/j.jhazmat.2019.121203

    Article  CAS  PubMed  Google Scholar 

  21. Li HY, Li DW, He CM, Zhou ZP, Mei T, Xu HM (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn mine wasteland in China. Fungal Ecol 5:309–315. https://doi.org/10.1016/j.funeco.2011.06.002

    Article  Google Scholar 

  22. Sánchez-Castro I, Gianinazzi-Pearson V, Cleyet-Marel JC, Baudoin E, van Tuinen D (2017) Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Sci Total Environ 598:121–128. https://doi.org/10.1016/j.scitotenv.2017.04.084

    Article  CAS  PubMed  Google Scholar 

  23. Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664. https://doi.org/10.1038/ismej.2012.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou JZ, Ning DL (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev 81:e00002-17. https://doi.org/10.1128/MMBR.00002-17

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253. https://doi.org/10.1111/j.1461-0248.2003.00566.x

    Article  Google Scholar 

  26. Bell G (2001) Neutral macroecology. Sci 293:2413–2418. https://doi.org/10.1126/science.293.5539.2413

    Article  CAS  Google Scholar 

  27. Chase JM, Leibold MA (2009) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago https://doi.org/10.1111/j.1442-9993.2004.01354.x

  28. Ning D, Deng Y, Tiedje JM, Zhou J (2019) A general framework for quantitatively assessing ecological stochasticity. Proc Natl Acad Sci U S A 116:16892–16898. https://doi.org/10.1073/pnas.1904623116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu L, Zhu K, Krause S, Li SP, Wang X, Zhang ZC, Shen MW, Yang QS, Lian JY, Wang XH, Ye WH, Zhang J (2021) Changes in assembly processes of soil microbial communities during secondary succession in two subtropical forests. Soil Biol Biochem 154:108144. https://doi.org/10.1016/j.soilbio.2021.108144

    Article  CAS  Google Scholar 

  30. Liu B, Yao J, Chen Z, Ma B, Li H, Wan CP, Liu J, Wang D, Duran R (2022) Biogeography, assembly processes and species coexistence patterns of microbial communities in metalloids-laden soils around mining and smelting sites. J Hazard Mater 425:127945. https://doi.org/10.1016/j.jhazmat.2021.127-945

    Article  CAS  PubMed  Google Scholar 

  31. Denef VJ, Mueller RS, Banfield JF (2010) AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J 4:599–610. https://doi.org/10.1038/ismej.2009.158

    Article  PubMed  Google Scholar 

  32. Fick SE, Hijmans RJ (2017) WorldClim2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  33. Sun DL, Sun YB (2014) Evaluation of the soil heavy metal pollution around the lead-zinc plants. Adv Mat Res 926:4238–4241. https://doi.org/10.4028/www.scientific.net/AMR.926-930.4238

    Article  CAS  Google Scholar 

  34. Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996) Methods of soil analysis: chemical methods. Soil Sci Soc Am J 896–1010. https://acsess.onlinelibrary.wiley.com/doi/book/10.2136/sssabookser5.3

  35. Li JT, Lu JL, Wang HY, Fang Z, Wang XJ, Feng SW, Wang Z, Yuan T, Zhang SC, Ou SN, Yang XD, Wu ZH, Du XD, Tang LY, Liao B, Shu WS, Jia P, Liang JL (2021) A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol Rev 96:2771–2793. https://doi.org/10.1111/brv.12779

    Article  CAS  PubMed  Google Scholar 

  36. Liu T, Chen X, Gong X, Lubbers IM, Jiang Y, Feng W, Li X, Whalen JK, Bonkowski M, Griffiths BS, Hu F, Liu M (2019) Earthworms coordinate soil biota to improve multiple ecosystem functions. Curr Biol 29:3420–3429. https://doi.org/10.1016/j.cub.2019.08.045

    Article  CAS  PubMed  Google Scholar 

  37. Li D, Liang X, Jin Y, Wu C, Zhou R (2019) Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying Bacterium, Klebsiella sp. TN-10. Appl Biochem Biotechnol 188:540–554. https://doi.org/10.1016/j.biortech.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  38. Christopher EB, Daniel DW, David JVH, Michael NW, Robert L, Sinsabaugh SDA, Donovan PG (2013) Measuring phenol oxidase and peroxidase activities with pyrogallol, L-DOPA, and ABTS: effect of assay conditions and soil type. Soil Biol Biochem 67:183–191. https://doi.org/10.1016/j.soilbio.2013.08.022

    Article  CAS  Google Scholar 

  39. Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H (2012) Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol 195:844–856. https://doi.org/10.1111/j.14698137.2012.04215.x

    Article  CAS  PubMed  Google Scholar 

  40. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da SR, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109. https://doi.org/10.1038/s41579-018-0116-y

    Article  CAS  PubMed  Google Scholar 

  43. Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AF, Tedersoo L, Vralstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068. https://doi.org/10.1111/j.1469-8137.2005.01376.x

    Article  CAS  PubMed  Google Scholar 

  44. Harrell FE, Dupont C (2019) Hmisc: harrell miscellaneous. R Package Version 4:2

    Google Scholar 

  45. Wang XB, Lü XT, Yao J, Wang ZW, Deng Y, Cheng WX, Zhou JZ, Han XG (2017) Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J 11:1345–1358. https://doi.org/10.1038/ismej.2017.11

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

    Article  Google Scholar 

  47. De’ath G, (2007) Boosted trees for ecological modeling and prediction. Ecology 88:243–251. https://doi.org/10.1890/0012-9658(2007)88[243:btfema]2.0.co;2

    Article  PubMed  Google Scholar 

  48. Levins R (2020) Evolution in changing environments. Princeton University Press, New Jersey, pp 39–65. https://doi.org/10.2307/j.ctvx5wbbh.7

  49. Zhang JL, Ma KP (2014) spaa: an R package for computing species association and niche overlap. Res Prog Bio Con China 10:165–174

    Google Scholar 

  50. Karney CFF (2013) Algorithms for geodesics. J Geodesy 87:43–55. https://doi.org/10.1007/s00190-012-0578-z

    Article  Google Scholar 

  51. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Rybery M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159. https://doi.org/10.1007/s13225-018-0401-0

    Article  Google Scholar 

  52. Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, Singan V, Vogel J, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW (2020) Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nat Commun 11:34. https://doi.org/10.1038/s41467-019-13913-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Letunic I, Bork P (2019) Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219. https://doi.org/10.3389/fmicb.2014.00219

    Article  PubMed  PubMed Central  Google Scholar 

  55. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  Google Scholar 

  56. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter Journal Complex Systems 1695:1–9. https://igraph.sf.net

  57. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. ICWSM 3:361–362. https://ojs.aaai.org/index.php/ICWSM/article/view/13937

  58. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008:P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  Google Scholar 

  59. Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 94:1443–1476. https://doi.org/10.1111/brv.12510

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu J, Hua ZS, Chen LX, Kuang JL, Li SJ, Shu WS, Huang LN (2014) Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Applied Environ Microbiol 80:3677–3686. https://doi.org/10.1128/AEM.00294-14

    Article  CAS  Google Scholar 

  61. Coleine C, Stajich JE, Selbmann L (2022) Fungi are key players in extreme ecosystems. Trends Ecol Evol 37:517–528. https://doi.org/10.1016/j.tree.2022.02.002

    Article  CAS  PubMed  Google Scholar 

  62. Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, Saxena RK, Erdogdu M, Selcuk F, Rajeshkumar KC, Aptroot A, Blaszkowski J, Boonyuen N, Silva GAD, Souza FAD, Dong W, Ertz D, Haelewaters D, Jones EBG, Karunarathna SC, Kirk PM, Kukwa M, Kumla J, Leontyev DV, Lumbsch HT, Maharachchikumbura SSN, Marguno F, Martínez-Rodríguez P, Mešić A, Monteiro JS, Oehl F, Pawłowska J, Pem D, Pfliegler WP, Phillips AJL, Pošta A, He MQ, Li JX, Raza M, Sruthi OP, Suetrong S, Suwannarach N, Tedersoo L, Thiyagaraja V, Tibpromma S, Zdenko T, Tokarev YS, Wanasinghe DN, Wijesundara DSA, Wimalaseana SDMK, Madrid H, Zhang GQ, Gao Y, Sánchez-Castro I, Tang LZ, Stadler M, Yurkov A, Thines M (2020) Outline of fungi and fungus-like taxa. Mycosphere 11:1160–1456. https://doi.org/10.5943/mycosphere/13/1/2

    Article  Google Scholar 

  63. Yuan J, Wen T, Zhang H, Zhao M, Penton CR, Thomashow LS, Shen Q (2020) Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME J 14:2936–2950. https://doi.org/10.1038/s41396-020-0720-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dambuza IM, Brown GD (2019) Fungi accelerate pancreatic cancer. Nature 574:184–185. https://doi.org/10.1038/d41586-019-02892-y

    Article  CAS  PubMed  Google Scholar 

  65. Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller KD, Michel R (2014) Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitol Res 113:1909–1918. https://doi.org/10.1007/s00436-014-3838-4

    Article  PubMed  Google Scholar 

  66. Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West PC, Clark JM, Adhya T, Rumpel C, Paustian K, Kuikman P, Cotrufo MF, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bondeau A, Jain AK, Meersmans J, Pugh TA (2016) Global change pressures on soils from land use and management. Glob Chang Biol 22:1008–1028. https://doi.org/10.1111/gcb.13068

    Article  PubMed  Google Scholar 

  67. Jones C, Jacobsen J (2005) Plant nutrition and soil fertility. Nutri Manage Module 2:1–11. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.576.5603&re-p=rep1&type=pdf

  68. Watkinson SC (2016) Mutualistic symbiosis between fungi and autotrophs. Academic Press, New York, pp 205–243

    Google Scholar 

  69. Kokkoris V, Lekberg Y, Antunes PM, Fahey C, Fordyce JA, Kivlin SN, Hart MM (2020) Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? New Phytol 228:828–838. https://doi.org/10.1111/nph.16676

    Article  PubMed  Google Scholar 

  70. Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol Biochem 43:795–803. https://doi.org/10.1016/j.soilbio.2010.12.014

    Article  CAS  Google Scholar 

  71. Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J 10:885–896. https://doi.org/10.1038/ismej.2015.164

    Article  PubMed  Google Scholar 

  72. Stegen JC, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC, Arntzen EV, Chrisler WB, Chu RK, Danczak RE, Fansler SJ, Kennedy DW, Resch CT, Tfaily M (2016) Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat Commun 7:11237. https://doi.org/10.1038/ncomms11237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu B, Yao J, Ma B, Li S, Duran R (2022) Disentangling biogeographic and underlying assembly patterns of fungal communities in metalliferous mining and smelting soils. Sci Total Environ 845:157151. https://doi.org/10.1016/j.scitotenv.2022.157151

    Article  CAS  PubMed  Google Scholar 

  74. Wang PD, Li SP, Yang X, Zhou JZ, Shu WS, Jiang L (2020) Mechanisms of soil bacterial and fungal community assembly differ among and within islands. Environ Microbiol 22:1559–1571. https://doi.org/10.1111/1462-2920.14864

    Article  PubMed  Google Scholar 

  75. Gongalsky KB, Belorustseva SA, Kuznetsova DM, Matyukhin AV, Pelgunova LA, Savin FA, Shapovalov AS (2009) Spatial avoidance of patches of polluted chernozem soils by soil invertebrates. Insect Sci 16:99–105. https://doi.org/10.1111/j.1744-7917.2009.00260.x

    Article  CAS  Google Scholar 

  76. Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340

    Article  Google Scholar 

  77. Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192. https://doi.org/10.2307/3546712

    Article  Google Scholar 

  78. Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6:e02288-14. https://doi.org/10.1128/mBio.02288-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martínez-García LB, Richardson SJ, Tylianakis JM, Peltzer DA, Dickie IA (2015) Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol 205:1565–1576. https://doi.org/10.1111/nph.13226

    Article  CAS  PubMed  Google Scholar 

  80. Feng Y, Chen R, Stegen JC, Guo Z, Zhang J, Li Z, Lin X (2018) Two key features influencing community assembly processes at regional scale: initial state and degree of change in environmental conditions. Mol Ecol 27:5238–5251. https://doi.org/10.1111/mec.14914

    Article  PubMed  Google Scholar 

  81. Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12:1072–1083. https://doi.org/10.1038/s41396-018-0082-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci U S A 112:E1326–E1332. https://doi.org/10.1073/pnas.1414261112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  PubMed  Google Scholar 

  84. Shi Y, Dang K, Dong Y, Feng M, Wang B, Li J, Chu HY (2020) Soil fungal community assembly processes under long-term fertilization. Eur J Soil Sci 71:716–726. https://doi.org/10.1111/ejss.12902

    Article  CAS  Google Scholar 

  85. Shi Y, Li Y, Xiang X, Sun R, Yang T, He D, Zhang K, Ni Y, Zhu YG, Adams JM, Chu HY (2018) Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome 6:27. https://doi.org/10.1186/s40168-018-0409-4

    Article  PubMed  PubMed Central  Google Scholar 

  86. Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  87. Rokas A, Wisecaver JH, Lind AL (2018) The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 16:731–744. https://doi.org/10.1038/s41579-018-0075-3

    Article  CAS  PubMed  Google Scholar 

  88. Zhou Z, Zheng M, Xia J, Wang C (2022) Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. Sci Total Environ 806:150569. https://doi.org/10.1016/j.scitotenv.2021.150569

    Article  CAS  PubMed  Google Scholar 

  89. Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, Keller T, Charles R, van der Heijden M (2019) Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J 13:1722–1736. https://doi.org/10.1038/s41396-019-0383-2

    Article  PubMed  PubMed Central  Google Scholar 

  90. Callaway RM (2013) Life at the edge, cooperation in Antarctica. J Veg Sci 24:417–418. https://doi.org/10.1111/jvs.12070

    Article  Google Scholar 

  91. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193. https://doi.org/10.1016/0169-5347(94)90088-4

    Article  CAS  PubMed  Google Scholar 

  92. Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Evolution-extensive fungal diversity in plant roots. Sci 295:2051–2051. https://doi.org/10.1126/science.295.556-2.2051

    Article  Google Scholar 

  93. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. https://doi.org/10.1038/nrmicro2832

    Article  CAS  PubMed  Google Scholar 

  94. Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519. https://doi.org/10.1073/pnas.0801925105

    Article  PubMed  PubMed Central  Google Scholar 

  95. Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecol 87:1399–1410. https://doi.org/10.1890/0012-9658(2006)87[1399:cotnan]2.0.co;2

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Alan Baker (The Universities of Melbourne and Queensland, Australia) for his help in reviewing and improving the text of this paper.

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 42077117, 42177009, and 41622106), the Key-Area Research and Development Program of Guangdong Province (No. 2019B110207001), Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120039), and Natural Science Foundation of Guangdong Province of China (No. 2020A1515010937).

Author information

Authors and Affiliations

Authors

Contributions

Shi-wei Feng: conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft. Jing-li Lu: conceptualization, methodology, investigation, data curation. Jie-Liang Liang: software, visualization. Zhuo-hui Wu: investigation. Xinzhu Yi: investigation. Ping Wen: investigation. Feng-lin Li: investigation. Bin Liao: resources, project administration, funding acquisition. Pu Jia: supervision, conceptualization, writing—review and editing, funding acquisition. Wen-sheng Shu: supervision, funding acquisition. Jin-tian Li: supervision, funding acquisition.

Corresponding author

Correspondence to Pu Jia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1779 KB)

Supplementary file2 (DOCX 3733 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Sw., Lu, Jl., Liang, JL. et al. Functional Guilds, Community Assembly, and Co-occurrence Patterns of Fungi in Metalliferous Mine Tailings Ponds in Mainland China. Microb Ecol 86, 843–858 (2023). https://doi.org/10.1007/s00248-022-02121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02121-6

Keywords

Navigation