Skip to main content

Advertisement

Log in

Molecular dynamics simulation studies of the structural response of an isolated Aβ1–42 monomer localized in the vicinity of the hydrophilic TiO2 surface

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We have probed the effect of a model hydrophilic surface, rutile TiO2, on the full-length amyloid beta (Aβ1–42) monomer using molecular dynamics simulations. The rutile surface brings about sharp changes in the peptide’s intrinsic behavior in a distance-dependent manner. The intrinsic collapse of the peptide is disrupted, while the β-sheet propensity is sharply enhanced with increased proximity to the surface. The results may have implications for Aβ self-assembly and fibrillogenesis on hydrophilic surfaces and should be taken into consideration in the design of novel nanomaterials for perturbing amyloidogenic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic Amyloid-beta (1–42) oligomers to fibrils. Nat Struct Mol Biol 17:561–567

    Article  PubMed  CAS  Google Scholar 

  • Andujar SA, Lugli F, Hofinger S, Enriz RD, Zerbetto F (2012) Amyloid-β fibril disruption by C60-molecular guidance for rational drug design. Phys Chem Chem Phys 14:8599–8607

    Article  CAS  Google Scholar 

  • Arce FT, Jang H, Ramachandran S, Landon PB, Nussinov R, Lal R (2011) Polymorphism of Amyloid β peptide in different environments: implications for membrane insertion and pore formation. Soft Matter 7:5267–5273

    Article  PubMed  CAS  Google Scholar 

  • Baumketner A, Shea J-E (2007) The structure of the Alzheimer Amyloid β 10–35 peptide probed through replica-exchange molecular dynamics simulations in explicit solvent. J Mol Biol 366:275–285

    Article  PubMed  CAS  Google Scholar 

  • Bernstein SL, Wyttenbach T, Baumketner A, Shea J-E, Bitan G, Teplow DB, Bowers MT (2005) Amyloid β-protein: monomer structure and early aggregation states of Aβ 42 and its Pro19 Alloform. J Am Chem Soc 127:2075–2084

    Article  PubMed  CAS  Google Scholar 

  • Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G, Teplow DB, Shea J-E, Ruotolo BT, Robinson CV, Bowers MT (2009) Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat Chem 1:326–331

    Article  PubMed  CAS  Google Scholar 

  • Best RB, Buchete N-V, Hummer G (2008) Are current molecular dynamics force fields too helical? Biophys J 95:L07–L09

    Article  PubMed  CAS  Google Scholar 

  • Bokvist M, Gröbner G (2007) Misfolding of amyloidogenic proteins at membrane surfaces: the impact of macromolecular crowding. J Am Chem Soc 129:14848–14849

    Article  PubMed  CAS  Google Scholar 

  • Borodin O, Smith GD, Bandyopadhyaya R, Byutner O (2003) Molecular dynamics study of the influence of solid interfaces on poly (ethylene oxide) structure and dynamics. Macromolecules 36:7873–7883

    Article  CAS  Google Scholar 

  • Bramanti E, Lenci F, Sgarbossa A (2010) Effects of hypericin on the structure and aggregation properties of β-Amyloid peptides. Eur Biophys J 39:1493–1501

    Article  PubMed  CAS  Google Scholar 

  • Brambilla D, Verpillot R, Le Droumaguet B, Nicolas J, Taverna M, Kόňa J, Lettiero B, Hashemi SH, De Kimpe L, Canovi M, Gobbi M, Nicolas Vr, Scheper W, Moghimi SM, Tvarośka I, Couvreur P, Andrieux K (2012) PEGylated nanoparticles bind to and alter Amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s Disease. ACS Nano 6:5897–5908

    Article  PubMed  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Cappai R, Barnham K (2008) Delineating the mechanism of Alzheimer’s Disease Aβ peptide neurotoxicity. Neurochem Res 33:526–532

    Article  PubMed  CAS  Google Scholar 

  • Chatelier RC, Minton AP (1996) Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. Biophys J 71:2367–2374

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee P, Sengupta N (2012) Effect of the A30P mutation on the structural dynamics of micelle-bound αSynuclein released in water: a molecular dynamics study. European Biophys J 41:483–489

    Article  CAS  Google Scholar 

  • Chebaro Y, Jiang P, Zang T, Mu Y, Nguyen PH, Mousseau N, Derreumaux P (2012) Structures of Aβ17–42 trimers in isolation and with five small-molecule drugs using a hierarchical computational procedure. J Phys Chem B 116:8412–8422

    Article  PubMed  CAS  Google Scholar 

  • Chen PC, Mwakwari SC, Oyelere AK (2008) Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 1:45–66

    CAS  Google Scholar 

  • Chong S-H, Ham S (2012) Impact of chemical heterogeneity on protein self-assembly in water. Proc Natl Acad Sci USA 109:7636–7641

    Article  PubMed  CAS  Google Scholar 

  • Colvin VL, Kulinowski KM (2007) Nanoparticles as catalysts for protein fibrillation. Proc Natl Acad Sci USA 104:8679–8680

    Article  PubMed  CAS  Google Scholar 

  • Davis CH, Berkowitz ML (2009a) Interaction between amyloid-β (1–42) peptide and phospholipid bilayers: a molecular dynamics study. Biophys J 96:785–797

    Article  PubMed  CAS  Google Scholar 

  • Davis CH, Berkowitz ML (2009b) Structure of the amyloid-β (1–42) monomer absorbed to model phospholipid bilayers: a molecular dynamics study. J Phys Chem B 113:14480–14486

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Natl Rev Drug Discov 7:771–782

    Article  CAS  Google Scholar 

  • Di Carlo M (2010) Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways. Euro Biophys J 39:877–888

    Article  Google Scholar 

  • Fezoui Y, Teplow DB (2002) Kinetic studies of amyloid β-protein fibril assembly. J Biol Chem 277:36948–36954

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Luo Y, Derreumaux P, Wei G (2009) Induced β-barrel formation of the Alzheimer’s Aβ25-35 oligomers on carbon nanotube surfaces: implication for amyloid fibril inhibition. Biophys J 97:1803–1975

    Article  Google Scholar 

  • Giacomelli CE, Norde W (2005) Conformational changes of the amyloid β-peptide (1–40) adsorbed on solid surfaces. Macromol Biosci 5:401–407

    Article  PubMed  CAS  Google Scholar 

  • Gralle M, Ferreira ST (2007) Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 82:11–32

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    Article  PubMed  CAS  Google Scholar 

  • Hall CK (2008) Thermodynamic and kinetic origins of Alzheimer’s and related diseases: a chemical engineer’s perspective. AIChE J 54:1956–1962

    Article  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Jana AK, Sengupta N (2012) Adsorption mechanism and collapse propensities of full-length, monomeric Aβ1–42 on the surface of a single-walled carbon nanotube: a molecular dynamics simulation study. Biophys J 102:1889–1896

    Article  PubMed  CAS  Google Scholar 

  • Jana AK, Jose JC, Sengupta N (2013) Critical roles of key domains in complete adsorption of Aβ peptide on single-walled carbon nanotubes: insights with point mutations and MD simulations. Phys Chem Chem Phys 15:837–844

    Article  PubMed  CAS  Google Scholar 

  • Jean L, Lee Chiu F, Vaux David J (2012) Enrichment of amyloidogenesis at an air-water interface. Biophys J 102:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312

    Article  CAS  Google Scholar 

  • Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Klimov D (2012) Binding to the lipid monolayer induces conformational transition in Aβ monomer. J Mol Mod. doi:10.1007/s00894-012-1596-8

  • Kim JE, Lee M (2003) Fullerene inhibits β-amyloid peptide aggregation. Biochem Biophys Res Commun 303:576–579

    Article  PubMed  CAS  Google Scholar 

  • Kostarelos K, Lacerda L, Pastorin G, Wu W, Sebastien Wieckowski, Luangsivilay J, Godefroy S, Pantarotto D, Briand J-P, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nano 2:108–113

    Article  CAS  Google Scholar 

  • Kowalewski T, Holtzman DM (1999) In situ atomic force microscopy study of Alzheimer’s β-amyloid peptide on different substrates: new insights into mechanism of β-sheet formation. Proc Natl Acad Sci USA 96:3688–3693

    Article  PubMed  CAS  Google Scholar 

  • Kurylowicz M, Giuliani M, Dutcher JR (2012) Using nanoscale substrate curvature to control the dimerization of a surface-bound protein. ACS Nano doi:10.1021/nn302948d

  • Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Ham S (2010) Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water. J Comput Chem 32:349–355

    Article  PubMed  Google Scholar 

  • Lee CF, Bird S, Shaw M, Jean L, Vaux DJ (2012) Combined effects of agitation, macromolecular crowding and interfaces on amyloidogenesis. J Biol Chem. doi:10.1074/jbc.M112.400580

  • Liao MQ, Tzeng YJ, Chang LYX, Huang HB, Lin TH, Chyan CL, Chen YC (2007) The correlation between neurotoxicity, aggregative ability and secondary structure studied by sequence truncated Aβ peptides. FEBS Lett 581:1161–1165

    Article  PubMed  CAS  Google Scholar 

  • Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104:8691–8696

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Chipot C, Shao X, Cai W (2011) Free-energy landscape of the helical wrapping of a carbon nanotube by a polysaccharide. J Phys Chem C 115:1851–1856

    Article  CAS  Google Scholar 

  • Lu X, Imae T (2007) Dendrimer-mediated synthesis of water-dispersible carbon-nanotube-supported oxide nanoparticles. J Phys Chem C 111:8459–8462

    Article  CAS  Google Scholar 

  • Masman MF, Eisel ULM, Csizmadia IG, Penke B, Enriz RD, Marrink SJ, Luiten PGM (2009) In silico study of full-length amyloid β 1–42 Tri- and Penta-Oligomers in solution. J Phys Chem B 113:11710–11719

    Article  PubMed  CAS  Google Scholar 

  • Miller Y, Ma B, Nussinov R (2010) Polymorphism in Alzheimer β amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev 110:4820–4838

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (1999) Adsorption of globular proteins on locally planar surfaces. II. Models for the effect of multiple adsorbate conformations on adsorption equilibria and kinetics. Biophys J 76:176–187

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  PubMed  CAS  Google Scholar 

  • Onufriev A, Bashford D, Case DA (2000) Modification of the generalized born model suitable for macromolecules. J Phys Chem B 104:3712–3720

    Article  CAS  Google Scholar 

  • Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct Func Bioinf 55:383–394

    Article  CAS  Google Scholar 

  • Pallitto MM, Murphy RM (2001) A mathematical model of the kinetics of β-amyloid fibril growth from the denatured state. Biophys J 81:1805–1822

    Article  PubMed  CAS  Google Scholar 

  • Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R (2009) Seeded growth of β-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci USA 106:7443–7448

    Article  PubMed  CAS  Google Scholar 

  • Sahoo B, Nag S, Sengupta P, Maiti S (2009) On the stability of the soluble amyloid aggregates. Biophys J 97:1454–1460

    Article  PubMed  CAS  Google Scholar 

  • Sgourakis NG, Yan Y, McCallum SA, Wang C, Garcia AE (2007) The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water: a combined MD/NMR study. J Mol Biol 368:1448–1457

    Article  PubMed  CAS  Google Scholar 

  • Shemetov AA, Nabiev I, Sukhanova A (2012) Molecular interaction of proteins and peptides with nanoparticles. ACS Nano 6:4585–4602

    Article  PubMed  CAS  Google Scholar 

  • Simona T, Veronica E, Paolo V, Nico AJvN, Alexandre MJJB, Remo G, Teodorico T, Piero AT, Delia P (2006) The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem 7:257–267

    Article  Google Scholar 

  • Smoak EM, Dabakis MP, Henricus MM, Tamayev R, Banerjee IA (2011) Interactions of amyloid Aβ(1–42) peptide with self-assembled peptide nanospheres. J Pept Sci 17:14–23

    Article  PubMed  CAS  Google Scholar 

  • Tofoleanu F, Buchete N-V (2012a) Alzheimer Aβ peptide interactions with lipid membranes: fibrils, oligomers and polymorphic amyloid channels. Prion 6:339–345

    Article  PubMed  CAS  Google Scholar 

  • Tofoleanu F, Buchete N-V (2012b) Molecular interaction of Alzheimer’s AB protofilaments with lipid membranes. J Mol Biol 421:572–586

    Article  PubMed  CAS  Google Scholar 

  • Tulip PR, Gregor CR, Troitzsch RZ, Martyna GJ, Cerasoli E, Tranter G, Crain J (2010) Conformational plasticity in an HIV-1 antibody epitope. J Phys Chem B 114:7942–7950

    Article  PubMed  CAS  Google Scholar 

  • Utesch T, Daminelli G, Mroginski MA (2011) Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance. Langmuir 27:13144–13153

    Article  PubMed  CAS  Google Scholar 

  • Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interf Sci 128–130:37–46

    Article  Google Scholar 

  • Viet MH, Ngo ST, Lam NS, Li MS (2011) Inhibition of aggregation of amyloid peptides by β-sheet breaker peptides and their binding affinity. J Phys Chem B 115:7433–7446

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zhao J, Yu X, Zhao C, Li L, Zheng J (2010) Alzheimer Aβ 1–42 monomer adsorbed on the self-assembled monolayers. Langmuir 26:12722–12732

    Article  PubMed  CAS  Google Scholar 

  • Wenrong Y, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001–412013

    Article  Google Scholar 

  • Wu W-h, Sun X, Hu J, Yu Y-p, Zhao L, Liu Q, Zhao Y-f, Li Y-m (2008) TiO2 nanoparticles promote β-amyloid fibrillation in vitro. Biochem Biophys Res Commun 373:315–318

    Article  PubMed  CAS  Google Scholar 

  • Yoo SI, Yang M, Brender JR, Subramanian V, Sun K, Joo NE, Jeong S-H, Ramamoorthy A, Kotov NA (2011) Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. Angew Chem Int Ed 50:5110–5115

    Article  CAS  Google Scholar 

  • Yu X, Wang Q, Lin Y, Zhao J, Zhao C, Zheng J (2012) Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite. Langmuir 28:6595–6605

    Article  CAS  Google Scholar 

  • Zhao J, Wang Q, Liang G, Zheng J (2011) Molecular dynamics simulations of low-ordered Alzheimer β-amyloid oligomers from dimer to hexamer on self-assembled monolayers. Langmuir 27:14876–14887

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.C.J. thanks the Council of Scientific and Industrial Research for her current Senior Research fellowship. The authors are grateful for financial assistance provided through the Multi-Scale Simulation and Modeling project (MSM), CSIR. CSIR-NCL, Pune, is acknowledged for startup funds and facilities provided through the Centre of Excellence in Scientific Computing. Financial assistance received from the Center of Excellence in Polymers (CoEP-SPIRIT), established from funding received from the Department of Chemicals and Petrochemicals is also acknowledged. J.C.J. would like to thank Mr. Mudit Dixit for help in generating the TiO2 surface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelanjana Sengupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

249_2013_900_MOESM1_ESM.doc

Supplementary material 1 (supplementary material associated with this article consists of plots depicting residue-wise β-sheet fractions; residue-wise alpha helix fractions; histogram of internal non-bonded energies of the peptide in systems A, B, C, and F; histogram of the distance between salt bridge-forming atoms in E22-K28 and D23-K28 for system A, B, and C; histogram of electrostatic interaction energy of the side chains of E22-K28 and D23-K28 with the TiO2 surface for systems A, B, and C.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jose, J.C., Sengupta, N. Molecular dynamics simulation studies of the structural response of an isolated Aβ1–42 monomer localized in the vicinity of the hydrophilic TiO2 surface. Eur Biophys J 42, 487–494 (2013). https://doi.org/10.1007/s00249-013-0900-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0900-6

Keywords

Navigation