Skip to main content
Log in

Tempo and mode of evolution of the Rh blood group genes before and after gene duplication

  • Brief Communication
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The Rh blood group genes became duplicated in a common ancestor of human–chimpanzee–gorilla. We compared the evolutionary rates of the Rh blood group genes for each exon for branches connecting to humans, having duplicated Rh loci, and to orangutan, gibbon, and Old World monkeys, species having a single Rh locus. Our results show that evolutionary rates of nonsynonymous substitutions at exon 7 became accelerated in the human lineage. Furthermore, we surveyed the sequence variation in the region surrounding exon 7 of gibbons to clarify whether the diversity of the human exon 7 was introduced after the duplication or had been maintained before it. Two amino acid polymorphisms in white-handed gibbons were observed in the immediate vicinity of the D-specific motif in the human exon 7. Although the evolutionary rate of exon 7 was accelerated after the gene duplication, our results suggest that exon 7 had the potential for change even before the gene duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Apoil P, Blancher A (1999) Sequences and evolution of mammalian RH gene transcripts and proteins. Immunogenetics 49:15–25

    Article  PubMed  CAS  Google Scholar 

  • Baum J, Ward RH, Conway DJ (2002) Natural selection on the erythrocyte surface. Mol Biol Evol 19:223–229

    PubMed  CAS  Google Scholar 

  • Blancher A, Socha WW (1997) The Rhesus system. In: Blancher A, Klein J, Socha WW (eds) Molecular biology and evolution of blood group and MHC antigens in primates. Springer-Verlag, Heidelberg, pp 147–218

    Google Scholar 

  • Cartron JP, Agre P (1993) Rh blood group antigens: protein and gene structure. Semin Hematol 30:193–208

    PubMed  CAS  Google Scholar 

  • Cherif-Zahar B, Bloy C, Le Van Kim C, Blanchard D, Bailly P, Hermand P, Salmon C, Cartron JP, Colin Y (1990) Molecular cloning and protein structure of a human blood group Rh polypeptide. Proc Natl Acad Sci USA 87:6243–6247

    Article  PubMed  CAS  Google Scholar 

  • Cherif-Zahar B, Mattei MG, Le Van Kim C, Bailly P, Cartron JP, Colin Y (1991) Localization of the human Rh blood group gene structure to chromosome region 1p34.3–1p36.1 by in situ hybridization. Hum Genet 86:398–400

    Article  PubMed  CAS  Google Scholar 

  • Cherif-Zahar B, Raynal V, D’Ambrosio AM, Cartron JP, Colin Y (1994) Molecular analysis of the structure and expression of the RH locus in individuals with D-, Dc-, and DCw-gene complexes. Blood 84:4354–4360

    PubMed  CAS  Google Scholar 

  • Glazko CV, Nei M (2003) Estimation of divergence times for major lineages of primate species. Mol Biol Evol 20:424–434

    Article  PubMed  CAS  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Thompson EE, Di Rienzo A (2002) Complex signatures of natural selection at the Duffy blood group locus. Am J Hum Genet 70:369–383

    Article  PubMed  Google Scholar 

  • Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92:532–536

    Article  PubMed  CAS  Google Scholar 

  • Innan H (2003) A two-locus gene conversion model with selection and its application to the human RHCE and RHD genes. Proc Natl Acad Sci USA 100:8793–8798

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Kitano T, Saitou N (1999) Evolution of Rh blood group genes have experienced gene conversions and positive selection. J Mol Evol 49:615–626

    Article  PubMed  CAS  Google Scholar 

  • Kitano T, Sumiyama K, Shiroishi T, Saitou N (1998) Conserved evolution of the Rh50 gene compared to its homologous Rh blood group gene. Biochem Biophys Res Commun 249:78–85

    Article  PubMed  CAS  Google Scholar 

  • Le van Kim C, Mouro I, Cherif-Zahar B, Raynal V, Cherrier C, Cartron JP, Colin Y (1992) Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc Natl Acad Sci USA 89:10925–10929

    Article  Google Scholar 

  • Li WH, Graur D (1991) Fundamentals of molecular evolution. Sinauer, Massachusetts

    Google Scholar 

  • Mouro I, Colin Y, Cherif-Zahar B, Cartron JP, Le Van Kim C (1993) Molecular genetic basis of the human Rhesus blood group system. Nat Genet 5:62–65

    Article  PubMed  CAS  Google Scholar 

  • Mouro I, Le Van Kim C, Cherif-Zahar B, Salvignol I, Blancher A, Cartron JP, Colin Y (1994) Molecular characterization of the Rh-like locus and gene transcripts from the rhesus monkey (Macaca mulatta). J Mol Evol 38:169–176

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia Univ. Press, New York

    Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Ruddle F, Ricciuti F, McMorris FA, Tischfield J, Creagan R, Darlington G, Chen T (1972) Somatic cell genetic assignment of peptidase C and the Rh linkage group to chromosome A-1 in man. Science 176:1429–1431

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Yamamoto F (1997) Evolution of primate ABO blood group genes and their homologous genes. Mol Biol Evol 14:399–411

    PubMed  CAS  Google Scholar 

  • Salvignol I, Blancher A, Calvas P, Socha WW, Colin Y, Cartron JP, Ruffie J (1993) Relationship between chimpanzee Rh-like genes and the R-C-E-F blood group system. J Med Primatol 22:19–28

    PubMed  CAS  Google Scholar 

  • Salvignol I, Blancher A, Calvas P, Clayton J, Socha WW, Colin Y, Ruffie J (1994) Molecular genetics of chimpanzee Rh-related genes: their relationship with the R-C-E-F blood group system, the chimpanzee counterpart of the human rhesus system. Biochem Genet 32:201–221

    Article  PubMed  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  • Suto Y, Ishikawa Y, Hyodo H, Uchikawa M, Juji T (2000) Gene organization and rearrangements at the human Rhesus blood group locus revealed by fiber-FISH analysis. Hum Genet 106:164–171

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    PubMed  CAS  Google Scholar 

  • Wagner FF, Flegel WA (2000) RHD gene deletion occurred in the Rhesus box. Blood 95:3662–3668

    PubMed  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Kumar S, Nei M (1995) A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141:1641–1650

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Great Ape Information Network (GAIN) for providing us an orangutan DNA sample and to Dr. Osamu Takenaka (now deceased) for providing us gibbon DNA samples. This study was supported by a grant-in-aid for scientific studies from the Ministry of Education, Science, Sports, and Culture of Japan to TK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kitano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

A neighbor-joining tree of primate Rh blood group genes. The mouse was used as an outgroup. Gene conversions in human, chimpanzee, and gorilla interrupt the orthologous relationship among the Rh duplicated genes (PDF 67 kb)

Supplementary Table 1

List of accession numbers for sequences of human, chimpanzee, and gorilla used to estimate diversities (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitano, T., Umetsu, K., Tian, W. et al. Tempo and mode of evolution of the Rh blood group genes before and after gene duplication. Immunogenetics 59, 427–431 (2007). https://doi.org/10.1007/s00251-007-0204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0204-z

Keywords

Navigation