Skip to main content
Log in

The equine CD1 gene family is the largest and most diverse yet identified

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The CD1 family is a group of non-polymorphic MHC class I-like molecules that present lipid-based antigens to T cells. Previous work in our laboratory demonstrated that cytotoxic T lymphocytes from immune adult horses recognize lipids from the cell wall of an important equine pathogen, Rhodococcus equi. These findings suggest an important role for the equine CD1 antigen presentation system in protective immune responses to microbial pathogens in the horse. In this study, we characterized and mapped the equine CD1 gene cluster. The equine genome was found to contain 13 complete CD1 genes; seven genes were classified as homologues of human CD1a, two CD1b, one CD1c, one CD1d, and two CD1e, making it the largest CD1 family to date. All but one of the eqCD1 molecules were expressed in all antigen-presenting cells investigated. The major amino acid differences between equine CD1 isoforms are located in the predicted antigen binding site, suggesting that a variety of lipid antigens can be presented. R. equi survives and replicates within professional phagocytes by arresting phagosome maturation between the early endosome and late phagosome. Based on the absence of a tyrosine sorting motif in all eqCD1a, CD1a molecules are predicted to co-localize with R. equi in the early endosome. Here, they could acquire lipid antigen and present it to T lymphocytes. The extraordinarily large number of CD1 molecules in the horse may reflect their crucial role in immunity to R. equi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Au-Yeung BB, Fowell DJ (2007) A key role for Itk in both IFN gamma and IL-4 production by NKT cells. J Immunol 179:111–119

    CAS  PubMed  Google Scholar 

  • Barral D, Brenner M (2007) CD1 antigen presentation: how it works. Nat Rev Immunol 7:929–941

    Article  CAS  PubMed  Google Scholar 

  • Borg N, Wun K, Kjer-Nielsen L, Wilce M, Pellicci D, Koh R, Besra G, Bharadwaj M, Godfrey D, McCluskey J, Rossjohn J (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448:44–49

    Article  CAS  PubMed  Google Scholar 

  • Bricard G, Porcelli S (2007) Antigen presentation by CD1 molecules and the generation of lipid-specific T cell immunity. Cell Mol Life Sci 64:1824–1840

    Article  CAS  PubMed  Google Scholar 

  • Calabi F, Jarvis JM, Martin L, Milstein C (1989) Two classes of CD1 genes. Eur J Immunol 19:285–292

    Article  CAS  PubMed  Google Scholar 

  • Cernadas M, Cavallari M, Watts G, Mori L, De Libero G, Brenner MB (2010) Early recycling compartment trafficking of CD1a is essential for its intersection and presentation of lipid antigens. J Immunol 184:1235–1241

    Article  CAS  PubMed  Google Scholar 

  • Cohen NR, Garg S, Brenner MB (2009) Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv Immunol 102:1–94

    Article  CAS  PubMed  Google Scholar 

  • Coles MC, Raulet DH (2000) NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+ CD8+ cells. J Immunol 164:2412–2418

    CAS  PubMed  Google Scholar 

  • Dascher C, Hiromatsu K, Xiong X, Morehouse C, Watts G, Liu G, McMurray D, LeClair K, Porcelli S, Brenner M (2003) Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int Immunol 15:915–925

    Article  CAS  PubMed  Google Scholar 

  • Dascher CC, Brenner MB (2003) Evolutionary constraints on CD1 structure: insights from comparative genomic analysis. Trends Immunol 24:412–418

    Article  CAS  PubMed  Google Scholar 

  • de la Salle H, Mariotti S, Angenieux C, Gilleron M, Garcia-Alles L, Malm D, Berg T, Paoletti S, Maître B, Mourey L, Salamero J, Cazenave J, Hanau D, Mori L, Puzo G, De Libero G (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–1324

    Article  PubMed  Google Scholar 

  • Elewaut D, Lawton AP, Nagarajan NA, Maverakis E, Khurana A, Honing S, Benedict CA, Sercarz E, Bakke O, Kronenberg M, Prigozy TI (2003) The adaptor protein AP-3 is required for CD1d-mediated antigen presentation of glycosphingolipids and development of Valpha14i NKT cells. J Exp Med 198:1133–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Mora E, Polidori M, Lührmann A, Schaible UE, Haas A (2005) Maturation of Rhodococcus equi-containing vacuoles is arrested after completion of the early endosome stage. Traffic 6:635–653

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Alles LF, Giacometti G, Versluis C, Maveyraud L, de Paepe D, Guiard J, Tranier S, Gilleron M, Prandi J, Hanau D, Heck AJ, Mori L, De Libero G, Puzo G, Mourey L, de la Salle H (2011) Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes. Proc Natl Acad Sci U S A 108:13230–13235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hammond S, Horohov D, Montelaro R (1999) Functional characterization of equine dendritic cells propagated ex vivo using recombinant human GM-CSF and recombinant equine IL-4. Vet Immunol Immunopathol 71:197–214

    Article  CAS  PubMed  Google Scholar 

  • Harris S, Fujiwara N, Mealey R, Alperin D, Naka T, Goda R, Hines S (2010) Identification of Rhodococcus equi lipids recognized by host cytotoxic T lymphocytes. Microbiology 156:1836–1847

    Article  CAS  PubMed  Google Scholar 

  • Hiromatsu K, Dascher C, LeClair K, Sugita M, Furlong S, Brenner M, Porcelli S (2002) Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. J Immunol 169:330–339

    CAS  PubMed  Google Scholar 

  • Jackman RM, Stenger S, Lee A, Moody DB, Rogers RA, Niazi KR, Sugita M, Modlin RL, Peters PJ, Porcelli SA (1998) The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8:341–351

    Article  CAS  PubMed  Google Scholar 

  • Kawashima T, Norose Y, Watanabe Y, Enomoto Y, Narazaki H, Watari E, Tanaka S, Takahashi H, Yano I, Brenner M, Sugita M (2003) Cutting edge: major CD8 T cell response to live bacillus Calmette-Guérin is mediated by CD1 molecules. J Immunol 170:5345–5348

    CAS  PubMed  Google Scholar 

  • Kelly BT, McCoy AJ, Späte K, Miller SE, Evans PR, Höning S, Owen DJ (2008) A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456:976–979

    Article  CAS  PubMed  Google Scholar 

  • Looringh van Beeck FA, Zajonc DM, Moore PF, Schlotter YM, Broere F, Rutten VP, Willemse T, Van Rhijn I (2008) Two canine CD1a proteins are differentially expressed in skin. Immunogenetics 60:315–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin LH, Calabi F, Lefebvre FA, Bilsland CA, Milstein C (1987) Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c. Proc Natl Acad Sci U S A 84:9189–9193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maruoka T, Tanabe H, Chiba M, Kasahara M (2005) Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics 57:590–600

    Article  CAS  PubMed  Google Scholar 

  • Patton K, McGuire T, Fraser D, Hines S (2004) Rhodococcus equi-infected macrophages are recognized and killed by CD8+ T lymphocytes in a major histocompatibility complex class I-unrestricted fashion. Infect Immun 72:7073–7083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patton K, McGuire T, Hines M, Mealey R, Hines S (2005) Rhodococcus equi-specific cytotoxic T lymphocytes in immune horses and development in asymptomatic foals. Infect Immun 73:2083–2093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porcelli S, Morita C, Brenner M (1992) CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature 360:593–597

    Article  CAS  PubMed  Google Scholar 

  • Porcelli SA (1995) The CD1 family: a third lineage of antigen-presenting molecules. Adv Immunol 59:1–98

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Herron L, Kapur V, Meijer W, Byrne B, Ren J, Nicholson V, Prescott J (2003) Partial genome sequencing of Rhodococcus equi ATCC 33701. Vet Microbiol 94:143–158

    Article  CAS  PubMed  Google Scholar 

  • Rodionov DG, Nordeng TW, Kongsvik TL, Bakke O (2000) The cytoplasmic tail of CD1d contains two overlapping basolateral sorting signals. J Biol Chem 275:8279–8282

    Article  CAS  PubMed  Google Scholar 

  • Salamero J, Bausinger H, Mommaas AM, Lipsker D, Proamer F, Cazenave JP, Goud B, de la Salle H, Hanau D (2001) CD1a molecules traffic through the early recycling endosomal pathway in human Langerhans cells. J Invest Dermatol 116:401–408

    Article  CAS  PubMed  Google Scholar 

  • Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ, Soriano T, Bloom BR, Brenner MB, Kronenberg M, Brennan PJ (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227–230

    Article  CAS  PubMed  Google Scholar 

  • Silk J, Salio M, Brown J, Jones E, Cerundolo V (2008) Structural and functional aspects of lipid binding by CD1 molecules. Annu Rev Cell Dev Biol 24:369–395

    Article  CAS  PubMed  Google Scholar 

  • Sugita M, Cao X, Watts GF, Rogers RA, Bonifacino JS, Brenner MB (2002) Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16:697–706

    Article  CAS  PubMed  Google Scholar 

  • Sugita M, Jackman RM, van Donselaar E, Behar SM, Rogers RA, Peters PJ, Brenner MB, Porcelli SA (1996) Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273:349–352

    Article  CAS  PubMed  Google Scholar 

  • Ulrichs T, Moody D, Grant E, Kaufmann S, Porcelli S (2003) T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect Immun 71:3076–3087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blöcker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guérin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Røed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvänen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Lander ES, Lindblad-Toh K, Platform BIGS, Team BIWGA (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe Y, Watari E, Matsunaga I, Hiromatsu K, Dascher C, Kawashima T, Norose Y, Shimizu K, Takahashi H, Yano I, Sugita M (2006) BCG vaccine elicits both T-cell mediated and humoral immune responses directed against mycobacterial lipid components. Vaccine 24:5700–5707

    Article  CAS  PubMed  Google Scholar 

  • Yu CY, Milstein C (1989) A physical map linking the five CD1 human thymocyte differentiation antigen genes. EMBO J 8:3727–3732

    CAS  PubMed  Google Scholar 

  • Zajonc DM, Elsliger MA, Teyton L, Wilson IA (2003) Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 A. Nat Immunol 4:808–815

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Castaño AR, Segelke BW, Stura EA, Peterson PA, Wilson IA (1997) Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277:339–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the technical assistance of David Herndon and Siddra Hines. We thank Emma Karel and Casey Lawson for their animal handling expertise. Special thanks to Wendy Brown and Robert Mealey for manuscript review. This work was funded by Morris Animal Foundation Grant D10EQ-046 and by United States Department of Agriculture-Agricultural Research Service 5348-32000-034-00D.

Conflict of interest

The authors declare that they have no conflict of interest and all animal studies have been approved by the appropriate ethics committee experiments and comply with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Hines.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 797 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dossa, R.G., Alperin, D.C., Hines, M.T. et al. The equine CD1 gene family is the largest and most diverse yet identified. Immunogenetics 66, 33–42 (2014). https://doi.org/10.1007/s00251-013-0741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-013-0741-6

Keywords

Navigation