Skip to main content
Log in

Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyclic nitramine explosives are synthesized globally mainly as military munitions, and their use has resulted in environmental contamination. Several biodegradation pathways have been proposed, and these are based mainly on end-product characterization because many of the metabolic intermediates are hypothetical and unstable in water. Biodegradation mechanisms for cyclic nitramines include (a) formation of a nitramine free radical and loss of nitro functional groups, (b) reduction of nitro functional groups, (c) direct enzymatic cleavage, (d) α-hydroxylation, or (e) hydride ion transfer. Pathway intermediates spontaneously decompose in water producing nitrite, nitrous oxide, formaldehyde, or formic acid as common end-products. In vitro enzyme and functional gene expression studies have implicated a limited number of enzymes/genes involved in cyclic nitramine catabolism. Advances in molecular biology methods such as high-throughput DNA sequencing, microarray analysis, and nucleic acid sample preparation are providing access to biochemical and genetic information on cultivable and uncultivable microorganisms. This information can provide the knowledge base for rational engineering of bioremediation strategies, biosensor development, environmental monitoring, and green biosynthesis of explosives. This paper reviews recent developments on the biodegradation of cyclic nitramines and the potential of genomics to identify novel functional genes of explosive metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrian NR, Arnett CM (2004) Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr Microbiol 48:332–340

    CAS  PubMed  Google Scholar 

  • Adrian NR, Chow T (2001) Identification of hydroxylamino-dinitroso-1,3,5-triazine as a transient intermediate formed during the anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ Toxicol Chem 20:1874–1877

    CAS  PubMed  Google Scholar 

  • Adrian NR, Arnett CM, Hickey RF (2003) Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. Water Res 37:3499–3507

    CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Athow R, Indest K (2004) Mining the soil metagenome for novel genes involved in the aerobic transformation/breakdown of hexahydro-1,3,5-trinitro-1,3,5-triazine. Annual meeting of the South Central Branch of the American Society for Microbiology, Mississippi State University, Starkville, MS, 5–6 November 2004

  • Balakrishnan VK, Halasz A, Hawari J (2003) Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Environ Sci Technol 37:1838–1843

    CAS  PubMed  Google Scholar 

  • Balakrishnan VK, Monteil-Rivera F, Halasz A, Corbeanu A, Hawari J (2004) Decomposition of the polycyclic nitramine explosive, CL-20, by FeO. Environ Sci Technol 38:6861–6866

    CAS  PubMed  Google Scholar 

  • Banh Q, Arenskötter M, Steinbüchel A (2005) Establishment of Tn5096-based transposon mutagenesis in Gordonia polyisoprenivorans. Appl Environ Microbiol 71:5077–5084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bardai G, Sunahara GI, Spear PA, Martel M, Gong P, Hawari J (2005) Effects of dietary administration of CL-20 on Japanese quail Coturnix coturnix japonica. Arch Environ Contam Toxicol 49:215–222

    CAS  PubMed  Google Scholar 

  • Beller HR (2002) Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. Water Res 36:2533–2540

    CAS  PubMed  Google Scholar 

  • Beller HR, Tiemeier K (2002) Use of liquid chromatography/tandem mass spectrometry to detect distinctive indicators of in situ RDX transformation in contaminated groundwater. Environ Sci Technol 36:2060–2066

    CAS  PubMed  Google Scholar 

  • Bhushan B, Halasz A, Spain JC, Hawari J (2002a) Diaphorase catalyzed biotransformation of RDX via N-denitration mechanism. Biochem Biophys Res Commun 296:779–784

    CAS  PubMed  Google Scholar 

  • Bhushan B, Halasz A, Spain JC, Thiboutot S, Ampleman G, Hawari J (2002b) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol 36:3104–3108

    CAS  PubMed  Google Scholar 

  • Bhushan B, Paquet L, Halasz A, Spain JC, Hawari J (2003a) Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions. Biochem Biophys Res Commun 306:509–515

    CAS  PubMed  Google Scholar 

  • Bhushan B, Paquet L, Spain JC, Hawari J (2003b) Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp. strain FA1. Appl Environ Microbiol 69:5216–5221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003c) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22. Appl Environ Microbiol 69:1347–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhushan B, Halasz A, Hawari J (2004a) Nitroreductase catalyzed biotransformation of CL-20. Biochem Biophys Res Comm 322:271–276

    CAS  PubMed  Google Scholar 

  • Bhushan B, Halasz A, Spain JC, Hawari J (2004b) Initial reaction(s) in biotransformation of CL-20 is catalyzed by salicylate 1-monooxygenase from Pseudomonas sp. strain ATCC 29352. Appl Environ Microbiol 70:4040–4047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004c) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Comm 316:816–821

    CAS  PubMed  Google Scholar 

  • Bhushan B, Halasz A, Hawari J (2005a) Biotransformation of CL-20 by a dehydrogenase enzyme from Clostridium sp. EDB2. Appl Microbiol Biotechnol 69:448–455

    CAS  PubMed  Google Scholar 

  • Bhushan B, Halasz A, Hawari J (2005b) Stereo-specificity for pro-(R) hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20. Biochem Biophys Res Commun 337:1080–1083

    CAS  PubMed  Google Scholar 

  • Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boopathy R (2001) Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. Bioresour Technol 76:241–244

    CAS  PubMed  Google Scholar 

  • Boopathy R, Gurgas M, Ullian J, Manning JF (1998) Metabolism of explosive compounds by sulfate-reducing bacteria. Curr Microbiol 37:127–131

    CAS  PubMed  Google Scholar 

  • Bradley PM, Dinicola RS (2005) RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation in aquifer sediments under manganese-reducing conditions. Biorem J 9:1–8

    CAS  Google Scholar 

  • Bryant C, Hubbard L, McElroy WD (1991) Cloning, nucleotide sequence, and expression of the nitroreductase gene from Enterobacter cloacae. J Biol Chem 266:4126–4130

    CAS  PubMed  Google Scholar 

  • Brzostowicz PC, Walters DM, Thomas SM, Nagarajan V, Rouvière PE (2003) mRNA differential display in a microbial enrichment culture: simultaneous identification of three cyclohexanone monooxygenases from three species. Appl Environ Microbiol 69:334–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environ Pollut 129:13–21

    CAS  PubMed  Google Scholar 

  • Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biol Biochem 30:1159–1167

    Google Scholar 

  • Coleman NV, Spain JC, Duxbury T (2002) Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J Appl Microbiol 93:463–472

    CAS  PubMed  Google Scholar 

  • Crocker FH, Thompson KT, Szecsody JE, Fredrickson HL (2005) Biotic and abiotic degradation of CL-20 and RDX in soils. J Environ Qual 34:2208–2216

    CAS  PubMed  Google Scholar 

  • Davis JL, Wani AH, O’Neal BR, Hansen LD (2004) RDX biodegradation column study: comparison of electron donors for biologically induced reductive transformation in groundwater. J Hazard Mater B112:45–54

    Google Scholar 

  • Denef VJ, Park J, Tsoi TV, Rouillard J-M, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM (2004) Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 70:4961–4970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont MG, Radajewski SM, Miguez CB, McDonald IR, Murrell JC (2006) Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environ Microbiol 8:1240–1250

    CAS  PubMed  Google Scholar 

  • Edwards J, Bruce NC (2005) Identification and characterization of RDX-degrading bacteria. Direct submission of NCBI database (Accession numbers DQ277702-09)

  • Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67:89–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes PJ, Powell JA, Archer JA (2001) Construction of Rhodococcus random mutagenesis libraries using Tn5 transposition complexes. Microbiology 147:2529–2536

    CAS  PubMed  Google Scholar 

  • Freedman DL, Sutherland KW (1998) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitrate-reducing conditions. Water Sci Technol 38:33–40

    CAS  Google Scholar 

  • Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier D, Halasz A, Spain J, Spanggord RJ, Bottaro JC, Hawari J (2004a) Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysosporium. Appl Environ Microbiol 70:1123–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier D, Halasz A, Thiboutot S, Ampleman G, Manno D, Hawari J (2004b) Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway. Environ Sci Technol 38:4130–4133

    CAS  PubMed  Google Scholar 

  • Fournier D, Trott S, Hawari J, Spain J (2005) Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178. Appl Environ Microbiol 71:4199–4202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier D, Monteil-Rivera F, Halasz A, Bhatt M, Hawari J (2006) Degradation of CL-20 by white-rot fungi. Chemosphere 63:175–181

    CAS  PubMed  Google Scholar 

  • Fuller ME, Lowey JM, Schaefer CE, Steffan RJ (2005) A peat moss-based technology for mitigating residues of the explosives TNT, RDX, and HMX in soil. Soil Sediment Contam 14:373–385

    CAS  Google Scholar 

  • Gallagher E, Young LY, Kerkhof LJ (2005) 15N stable isotope probing to detect TNT utilizers in coastal sediments. 105th General Meeting of the American Society of Microbiology, Atlanta, GA, 5–9 June 2005

  • Gong P, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2001) Ecotoxicological effects of hexahydro-1,3,5-trinitro-1,3,5-triazine on soil microbial activities. Environ Toxicol Chem 20:947–951

    CAS  PubMed  Google Scholar 

  • Gong P, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2002) Toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) to soil microbes. Bull Environ Contam Toxicol 69:97–103

    CAS  PubMed  Google Scholar 

  • Gong P, Sunahara GI, Rocheleau S, Dodard SG, Robidoux PY, Hawari J (2004) Preliminary ecotoxicological characterization of a new energetic substance, CL-20. Chemosphere 56:653–658

    CAS  PubMed  Google Scholar 

  • Halasz A, Spain J, Paquet L, Beaulieu C, Hawari J (2002) Insights into the formation and degradation mechanisms of methylenedinitramine during the incubation of RDX with anaerobic sludge. Environ Sci Technol 36:633–638

    CAS  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    CAS  PubMed  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000a) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    CAS  PubMed  Google Scholar 

  • Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000b) Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35:70–75

    CAS  PubMed  Google Scholar 

  • Hawari J, Deschamps S, Beaulieu C, Paquet L, Halasz A (2004) Photodegradation of CL-20: insights into the mechanisms of initial reactions and environmental fate. Water Res 38:4055–4064

    CAS  PubMed  Google Scholar 

  • Henne A, Daniel R, Schmitz RA, Gottschalk G (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt AD (2002) Analysis of nitroglycerine in soils and on mortar fins using GC-TID. U.S. Army Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, Technical report ERDC/CRREL TR-02-3

  • Hughes JB, Wang C, Yesland K, Richardson A, Bhadra R, Bennett G, Rudolph F (1998) Bamberger rearrangement during TNT metabolism by Clostridium acetobutylicum. Environ Sci Technol 32:494–500

    CAS  Google Scholar 

  • Hughes JB, Wang CY, Zhang C (1999) Anaerobic biotransformation of 2,4-dinitrotoluene and 2,6-dinitrotoluene by Clostridium acetobutylicum: a pathway through dihydroxylamino intermediates. Environ Sci Technol 33:1065–1070

    CAS  Google Scholar 

  • Iimura Y, Tatsumi K (1997) Isolation of mRNAs induced by a hazardous chemical in white-rot fungus, Coriolus versicolor, by differential display. FEBS Lett 412:370–374

    CAS  PubMed  Google Scholar 

  • Indest KJ, Crocker FH, Athow R (2006) A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene. J Microbiol Methods. DOI 10.1016/j.mimet.2006.08.008

  • Jenkins TF, Walsh ME, Thorne PG, Miyares PH, Ranney TA, Grant CL, Esparza JR (1998) Site characterization for explosives contamination at a military firing range impact area. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, Special report 98-9

  • Jenkins TF, Pennington JC, Ranney TA, Berry TE Jr, Miyares PH, Walsh ME, Hewitt AD, Perron NM, Parker LV, Hayes CA, Wahlgren EG (2001) Characterization of explosives contamination at military firing ranges. U.S. Army Engineer Research and Development Center, Technical report ERDC TR–01-5

  • Jenkins TF, Bartolini C, Ranney TA (2003) Stability of CL-20, TNAZ, HMX, RDX, NG, and PETN in moist, unsaturated soil. U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Technical report ERDC/CCREL TR-03-7

  • Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60:4608–4711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ (2000) Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Can J Microbiol 46:278–282

    CAS  PubMed  Google Scholar 

  • Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    CAS  PubMed  Google Scholar 

  • McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42:817–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monteil-Rivera F, Groom C, Hawari J (2003) Sorption and degradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in soil. Environ Sci Technol 37:3878–3884

    CAS  PubMed  Google Scholar 

  • Monteil-Rivera F, Paquet L, Deschamps S, Balakrishnan VK, Beaulieu C, Hawari J (2004) Physico-chemical measurements of CL-20 for environmental applications. Comparison with RDX and HMX. J Chromatogr A 1025:125–132

    CAS  PubMed  Google Scholar 

  • Oh B-T, Just CL, Alvarez PJJ (2001) Hexahydro-1,3,5-trinitro-1,3,5-triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environ Sci Technol 35:4341–4346

    CAS  PubMed  Google Scholar 

  • Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J (2005) The mechanism of unimolecular decomposition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. A computational DFT study. J Phys Chem 109:2964–2970

    CAS  Google Scholar 

  • Parro V, Moreno-Paz M (2003) Gene function analysis in environmental isolates: the nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans. Proc Natl Acad Sci U S A 100:7883–7888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pennington JC, Jenkins TF, Brannon JM, Lynch J, Ranney TA, Berry TE Jr, Hayes CA, Miyares PH, Walsh ME, Hewitt AD, Perron N, Delfino JJ (2001) Distribution and fate of energetics on DoD test and training ranges: interim report 1. U.S. Army Engineer Research and Development Center, Technical report ERDC TR-01-13

  • Pennington JC, Jenkins TF, Thiboutot S, Ampleman G, Clausen J, Hewitt AD, Lewis J, Walsh MR, Walsh ME, Ranney TA, Silverblatt B, Marois A, Gagnon A, Brousseau P, Zufelt JE, Poe K, Bouchard M, Martel R, Walker DD, Ramsey CA, Hayes CA, Yost SL, Bjella KL, Trepanier L, Berry TE Jr, Lambert DJ, Dubé P, Perron NM (2005) Distribution and fate of energetics on DoD test and training ranges: interim report 5. U.S. Army Engineer Research and Development Center, Vicksburg, MS, Technical report ERDC TR-05-2

  • Qasim MM, Fredrickson HL, McGrath C, Furey J, Szecsody J, Bajpai R (2004) Semiempirical predictions of chemical degradation reaction mechanisms of CL-20 as related to molecular structure. Struct Chem 15:493–499

    CAS  Google Scholar 

  • Qasim M, Fredrickson H, Honea P, Furey J, Leszczynski J, Okovytyy S, Szecsody J, Kholod Y (2005a) Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction. SAR QSAR Environ Res 16:495–515

    CAS  PubMed  Google Scholar 

  • Qasim M, Fredrickson H, McGrath C, Furey J, Bajpai R (2005b) Theoretical predictions of chemical degradation reaction mechanisms of RDX and other cyclic nitramines derived from their molecular structures. SAR QSAR Environ Res 16:203–218

    CAS  PubMed  Google Scholar 

  • Ringelberg DB, Reynolds CM, Walsh ME, Jenkins TF (2003) RDX loss in a surface soil under saturated and well drained conditions. J Environ Qual 32:1244–1249

    CAS  PubMed  Google Scholar 

  • Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2002) TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Arch Environ Contam Toxicol 43:379–388

    CAS  PubMed  Google Scholar 

  • Robidoux PY, Sunahara GI, Savard K, Berthelot Y, Dodard S, Martel M, Gong P, Hawari J (2004) Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils. Environ Toxicol Chem 23:1026–1034

    CAS  PubMed  Google Scholar 

  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A 93:10614–10619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherburne LA, Shrout JD, Alvarez PJJ (2005) Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation 16:539–547

    CAS  PubMed  Google Scholar 

  • Sheremata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environ Sci Technol 34:3384–3388

    CAS  Google Scholar 

  • Shrout JD, Larese-Casanova P, Scherer MM, Alvarez PJ (2005) Sustained and complete hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in zero-valent iron simulated barriers under different microbial conditions. Environ Technol 26:1115–1126

    CAS  PubMed  Google Scholar 

  • Spain JC (2000) Introduction. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Boca Raton, FL, pp 1–5

    Google Scholar 

  • Strigul N, Braida W, Christodoulatos C, Balas W, Nicolich S (2006) The assessment of the energetic compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) degradability in soil. Environ Pollut 139:353–361

    CAS  PubMed  Google Scholar 

  • Szecsody JE, Girvin DC, Devary BJ, Campbell JA (2004) Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments. Chemosphere 56:593–610

    CAS  PubMed  Google Scholar 

  • Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trott S, Nishino SF, Hawari J, Spain JC (2003) Biodegradation of the nitramine explosive CL-20. Appl Environ Microbiol 69:1871–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    CAS  PubMed  Google Scholar 

  • Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23:88–93

    CAS  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency (2004) 2004 edition of the drinking water standards and health advisories. Publication EPA 822-R-04-005. Office of Water, U.S. Environmental Protection Agency, Washington, D.C.

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a photosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoids × nigra DN34). Appl Environ Microbiol 70:508–517

    PubMed  PubMed Central  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  • Waisner S, Hansen L, Fredrickson H, Nestler C, Zappi M, Banerji S, Bajpai R (2002) Biodegradation of RDX within soil–water slurries using a combination of differing redox incubation conditions. J Hazard Mater B 95:91–106

    CAS  Google Scholar 

  • Walsh ME, Collins CM, Racine CH, Jenkins TF, Gelvin AB, Ranney TA (2001) Sampling for explosive residues at Fort Greely, Alaska: reconnaissance visit, July 2000. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, Technical report ERDC/CRREL TR-01-15

  • Walters DM, Russ R, Knackmuss HJ, Rouvière PE (2001) High-density sampling of a bacterial operon using mRNA differential display. Gene 273:305–315

    CAS  PubMed  Google Scholar 

  • Wang C, Meek DJ, Panchal P, Boruvka N, Archibald FS, Driscoll BT, Charles TC (2006) Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol 72:384–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson LL, Borlee BR, Schloss PD, Guan C, Allen HK, Handeslman J (2005) Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol 71:6335–6344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wingfors H, Edlund C, Hägglund L, Waleij A, Sjöström J, Karlsson R-M, Leffler P, Qvarfort U, Ahlberg M, Thiboutot S, Ampleman G, Martel R, Duvalois W, Creemers A, van Ham N (2006) Evaluation of the contamination by explosives and metals in soils at the Älvdalen Shooting Range. Part II: results and discussion. FOI–Swedish Defence Research Agency, NBC Defence, SE-901 82 Umeå, Report FO1-R-1877-SE

  • Young DM, Unkefer PJ, Ogden KL (1997) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate, Serratia marcescens. Biotechnol Bioeng 53:515–522

    CAS  PubMed  Google Scholar 

  • Zaigler A, Schuster SC, Soppa J (2003) Construction and usage of a onefold-coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii. Mol Microbiol 48:1089–1105

    CAS  PubMed  Google Scholar 

  • Zhang C, Hughes JB (2003) Biodegradation pathways of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Clostridium acetobutylicum cell-free extract. Chemosphere 50:665–671

    CAS  PubMed  Google Scholar 

  • Zhao J-S, Halasz A, Paquet L, Beaulieu C, Hawari J (2002) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68:5336–5341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J-S, Paquet L, Halasz A, Hawari J (2003a) Metabolism of hexahydro-1,3-5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl Microbiol Biotechnol 63:187–193

    CAS  PubMed  Google Scholar 

  • Zhao J-S, Spain J, Hawari J (2003b) Phylogenetic and metabolic diversity of hexahydro-1,3,5-trintitro-1,3,5-triazine (RDX)-transforming bacteria in strictly anaerobic mixed cultures enriched on RDX as nitrogen source. FEMS Microbiol Ecol 46:189–196

    CAS  PubMed  Google Scholar 

  • Zhao J-S, Greer CW, Thiboutot S, Ampleman G, Hawari J (2004a) Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50:91–96

    PubMed  Google Scholar 

  • Zhao J-S, Paquet L, Halasz A, Manno D, Hawari J (2004b) Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett 237:65–72

    CAS  PubMed  Google Scholar 

  • Zhao J-S, Spain J, Thiboutot S, Ampleman G, Greer C, Hawari J (2004c) Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol 49:349–357

    CAS  PubMed  Google Scholar 

  • Zhao J-S, Manno D, Beaulieu C, Paquet L, Hawari J (2005) Shewanellasediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. Int J Syst Evol Microbiol 55:1511–1520

    CAS  PubMed  Google Scholar 

  • Zhao J-S, Manno D, Leggiadro C, O’Neil D, Hawari J (2006) Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile. Int J Syst Evol Microbiol 56:205–212

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the United States Army Corps of Engineers Environmental Quality Technology Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona H. Crocker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crocker, F.H., Indest, K.J. & Fredrickson, H.L. Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73, 274–290 (2006). https://doi.org/10.1007/s00253-006-0588-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0588-y

Keywords

Navigation