Skip to main content
Log in

The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biotechnological production of recombinant proteins is challenged by processes that decrease the yield, such as protease action, aggregation, or misfolding. Today, the variation of strains and vector systems or the modulation of inducible promoter activities is commonly used to optimize expression systems. Alternatively, aggregation to inclusion bodies may be a desired starting point for protein isolation and refolding. The discovery of the twin-arginine translocation (Tat) system for folded proteins now opens new perspectives because in most cases, the Tat machinery does not allow the passage of unfolded proteins. This feature of the Tat system can be exploited for biotechnological purposes, as expression systems may be developed that ensure a virtually complete folding of a recombinant protein before purification. This review focuses on the characteristics that make recombinant Tat systems attractive for biotechnology and discusses problems and possible solutions for an efficient translocation of folded proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alder NN, Theg SM (2003) Energetics of protein transport across biological membranes. a study of the thylakoid ΔpH-dependent/cpTat pathway. Cell 112:231–242

    Article  CAS  PubMed  Google Scholar 

  • Behrendt J, Standar K, Lindenstrauss U, Brüser T (2004) Topological studies on the twin-arginine translocase component TatC. FEMS Microbiol Lett 234:303–308

    Article  CAS  PubMed  Google Scholar 

  • Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674

    Article  CAS  PubMed  Google Scholar 

  • Berks BC (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22:393–404

    Article  CAS  PubMed  Google Scholar 

  • Berks BC, Palmer T, Sargent F (2005) Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol 8:174–181

    Article  CAS  PubMed  Google Scholar 

  • Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35:260–274

    Article  CAS  PubMed  Google Scholar 

  • Blaudeck N, Sprenger GA, Freudl R, Wiegert T (2001) Specificity of signal peptide recognition in Tat-dependent bacterial protein translocation. J Bacteriol 183:604–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaudeck N, Kreutzenbeck P, Freudl R, Sprenger GA (2003) Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J Bacteriol 185:2811–2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaudeck N, Kreutzenbeck P, Müller M, Sprenger GA, Freudl R (2005) Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J Biol Chem 280:3426–3432

    Article  CAS  PubMed  Google Scholar 

  • Bogsch E, Brink S, Robinson C (1997) Pathway specificity for a ΔpH-dependent precursor thylakoid lumen protein is governed by a ‘Sec-avoidance’ motif in the transfer peptide and a ‘Sec-incompatible’ mature protein. EMBO J 16:3851–3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, Venema G, Bron S, van Dijl JM (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl Environ Microbiol 65:2934–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C (2001) TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276:20213–20219

    Article  CAS  PubMed  Google Scholar 

  • Brink S, Bogsch EG, Edwards WR, Hynds PJ, Robinson C (1998) Targeting of thylakoid proteins by the ΔpH-driven twin-arginine translocation pathway requires a specific signal in the hydrophobic domain in conjunction with the twin-arginine motif. FEBS Lett 434:425–430

    Article  CAS  PubMed  Google Scholar 

  • Brüser T, Sanders C (2003) An alternative model of the twin arginine translocation system. Microbiol Res 158:7–17

    Article  PubMed  Google Scholar 

  • Brüser T, Yano T, Brune DC, Daldal F (2003) Membrane targeting of a folded and cofactor-containing protein. Eur J Biochem 270:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Buchanan G, Sargent F, Berks BC, Palmer T (2001) A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Arch Microbiol 177:107–112

    Article  CAS  PubMed  Google Scholar 

  • Cline K, Mori H (2001) Thylakoid ΔpH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J Cell Biol 154:719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristóbal S, de Gier JW, Nielsen H, von Heijne G (1999) Competition between Sec-and TAT-dependent protein translocation in Escherichia coli. EMBO J 18:2982–2990

    Article  PubMed  PubMed Central  Google Scholar 

  • Dabney-Smith C, Mori H, Cline K (2006) Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J Biol Chem 281:5476–5483

    Article  CAS  PubMed  Google Scholar 

  • Darwin AJ (2005) The phage-shock-protein response. Mol Microbiol 57:621–628

    Article  CAS  PubMed  Google Scholar 

  • De Keersmaeker S, Van Mellaert L, Lammertyn E, Vrancken K, Anne J, Geukens N (2005a) Functional analysis of TatA and TatB in Streptomyces lividans. Biochem Biophys Res Commun 335:973–982

    Article  PubMed  CAS  Google Scholar 

  • De Keersmaeker S, Van Mellaert L, Schaerlaekens K, Van Dessel W, Vrancken K, Lammertyn E, Anne J, Geukens N (2005b) Structural organization of the twin-arginine translocation system in Streptomyces lividans. FEBS Lett 579:797–802

    Article  PubMed  CAS  Google Scholar 

  • De Keersmaeker S, Vrancken K, Van Mellaert L, Lammertyn E, Anne J, Geukens N (2006) Evaluation of TatABC overproduction on Tat-and Sec-dependent protein secretion in Streptomyces lividans. Arch Microbiol 186:507–512

    Article  CAS  PubMed  Google Scholar 

  • de Leeuw E, Porcelli I, Sargent F, Palmer T, Berks BC (2001) Membrane interactions and self-association of the TatA and TatB components of the twin-arginine translocation pathway. FEBS Lett 506:143–148

    Article  PubMed  Google Scholar 

  • DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA 100:6115–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLisa MP, Lee P, Palmer T, Georgiou G (2004) Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J Bacteriol 186:366–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demchick P, Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178:768–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cola A, Robinson C (2005) Large-scale translocation reversal within the thylakoid Tat system in vivo. J Cell Biol 171:281–289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dilks K, Rose RW, Hartmann E, Pohlschröder M (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:1478–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driessen AJ, Manting EH, van der Does C (2001) The structural basis of protein targeting and translocation in bacteria. Nat Struct Biol 8:492–498

    Article  CAS  PubMed  Google Scholar 

  • Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182:4068–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filloux A (2004) The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694:163–179

    Article  CAS  PubMed  Google Scholar 

  • Fisher AC, Kim W, DeLisa MP (2006) Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway. Protein Sci 15:449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornwald JA, Donovan MJ, Gerber R, Keller J, Taylor DP, Arcuri EJ, Brawner ME (1993) Soluble forms of the human T cell receptor CD4 are efficiently expressed by Streptomyces lividans. Biotechnology (N Y) 11:1031–1036

    CAS  Google Scholar 

  • Gauthier C, Li H, Morosoli R (2005) Increase in xylanase production by Streptomyces lividans through simultaneous use of the Sec-and Tat-dependent protein export systems. Appl Environ Microbiol 71:3085–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genest O, Seduk F, Ilbert M, Mejean V, Iobbi-Nivol C (2006) Signal peptide protection by specific chaperone. Biochem Biophys Res Commun 339:991–995

    Article  CAS  PubMed  Google Scholar 

  • Gerard F, Cline K (2006) Efficient twin arginine translocation (Tat) Pathway transport of a precursor protein covalently anchored to its initial cpTatC binding site. J Biol Chem 281:6130–6135

    Article  CAS  PubMed  Google Scholar 

  • Gerard F, Cline K (2007) The thylakoid proton gradient promotes an advanced stage of signal peptide binding deep within the Tat pathway receptor complex. J Biol Chem 282:5263–5272

    Article  CAS  PubMed  Google Scholar 

  • Gerard F, Angelini S, Wu LF (2002) Export of Thermus thermophilus cytoplasmic beta-glycosidase via the E. coli Tat pathway. J Mol Microbiol Biotechnol 4:533–538

    CAS  PubMed  Google Scholar 

  • Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC (2005) The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102:10482–10486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouffi K, Gerard F, Santini C L, Wu L F (2004) Dual topology of the Escherichia coli TatA protein. J Biol Chem 279:11608–11615

    Article  CAS  PubMed  Google Scholar 

  • Graubner W, Schierhorn A, Brüser T (2007) DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone. J Biol Chem 282:7116–7124

    Article  CAS  PubMed  Google Scholar 

  • Halbig D, Hou B, Freudl R, Sprenger GA, Klösgen RB (1999a) Bacterial proteins carrying twin-R signal peptides are specifically targeted by the ΔpH-dependent transport machinery of the thylakoid membrane system. FEBS Lett 447:95–98

    Article  CAS  PubMed  Google Scholar 

  • Halbig D, Wiegert T, Blaudeck N, Freudl R, Sprenger GA (1999b) The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur J Biochem 263:543–551

    Article  CAS  PubMed  Google Scholar 

  • Heikkilä MP, Honisch U, Wunsch P, Zumft WG (2001) Role of the Tat ransport system in nitrous oxide reductase translocation and cytochrome cd1 biosynthesis in Pseudomonas stutzeri. J Bacteriol 183:1663–1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinsley AP, Stanley NR, Palmer T, Berks BC (2001) A naturally occurring bacterial Tat signal peptide lacking one of the ‘invariant’ arginine residues of the consensus targeting motif. FEBS Lett 497:45–49

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel E, Eisner G, Alami M, Barrett CM, Buchanan G, Lüke I, Betton JM, Robinson C, Palmer T, Moser M, Müller M (2007) The entire N-Terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry 46:2892–2898

    Article  CAS  PubMed  Google Scholar 

  • Hynds PJ, Robinson D, Robinson C (1998) The sec-independent twin-arginine translocation system can transport both tightly folded and malfolded proteins across the thylakoid membrane. J Biol Chem 273:34868–34874

    Article  CAS  PubMed  Google Scholar 

  • Ize B, Gerard F, Zhang M, Chanal A, Voulhoux R, Palmer T, Filloux A, Wu LF (2002) In vivo dissection of the Tat translocation pathway in Escherichia coli. J Mol Biol 317:327–335

    Article  CAS  PubMed  Google Scholar 

  • Ize B, Stanley NR, Buchanan G, Palmer T (2003) Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Jack RL, Sargent F, Berks BC, Sawers G, Palmer T (2001) Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183:1801–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongbloed JD, Antelmann H, Hecker M, Nijland R, Bron S, Airaksinen U, Pries F, Quax WJ, van Dijl JM, Braun PG (2002) Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem 277:44068–44078

    Article  CAS  PubMed  Google Scholar 

  • Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM (2004) Two minimal Tat translocases in Bacillus. Mol Microbiol 54:1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Jongbloed JD, van der Ploeg R, van Dijl JM (2006) Bifunctional TatA subunits in minimal Tat protein translocases. Trends Microbiol 14:2–4

    Article  CAS  PubMed  Google Scholar 

  • Kang DG, Lim GB, Cha HJ (2005) Functional periplasmic secretion of organophosphorous hydrolase using the twin-arginine translocation pathway in Escherichia coli. J Biotechnol 118:379–385

    Article  CAS  PubMed  Google Scholar 

  • Ki JJ, Kawarasaki Y, Gam J, Harvey BR, Iverson BL, Georgiou G (2004) A periplasmic fluorescent reporter protein and its application in high-throughput membrane protein topology analysis. J Mol Biol 341:901–909

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Date M, Itaya H, Matsui K, Wu LF (2006) Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 72:7183–7192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Fogarty EA, Lu FJ, Zhu H, Wheelock GD, Henderson LA, DeLisa MP (2005) Twin-arginine translocation of active human tissue plasminogen activator in Escherichia coli. Appl Environ Microbiol 71:8451–8459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kipping M, Lilie H, Lindenstrauss U, Andreesen JR, Griesinger C, Carlomagno T, Brüser T (2003) Structural studies on a twin-arginine signal sequence. FEBS Lett 550:18–22

    Article  CAS  PubMed  Google Scholar 

  • Lee PA, Buchanan G, Stanley NR, Berks BC, Palmer T (2002) Truncation analysis of TatA and TatB defines the minimal functional units required for protein translocation. J Bacteriol 184:5871–5879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SY, Chang BY, Lin SC (2005) Coexpression of TorD enhances the transport of GFP via the TAT pathway. J Biotechnol 122:412–421

    Article  PubMed  CAS  Google Scholar 

  • Lindenstrauss U, Brüser T (2006) Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems. J Bacteriol 188:7807–7814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masip L, Pan JL, Haldar S, Penner-Hahn JE, DeLisa MP, Georgiou G, Bardwell JC, Collet JF (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303:1185–1189

    Article  CAS  PubMed  Google Scholar 

  • Molik S, Karnauchov I, Weidlich C, Herrmann RG, Klösgen RB (2001) The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts: missing link in the evolution of protein transport pathways in chloroplasts? J Biol Chem 276:42761–42766

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Summer EJ, Ma X, Cline K (1999) Component specificity for the thylakoidal Sec and ΔpH-dependent protein transport pathways. J Cell Biol 146:45–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller M, Klösgen RB (2005) The Tat pathway in bacteria and chloroplasts. Mol Membr Biol 22:113–121

    Article  PubMed  CAS  Google Scholar 

  • Nurizzo D, Halbig D, Sprenger GA, Baker EN (2001) Crystal structures of the precursor form of glucose-fructose oxidoreductase from Zymomonas mobilis and its complexes with bound ligands. Biochemistry 40:13857–13867

    Article  CAS  PubMed  Google Scholar 

  • Oates J, Mathers J, Mangels D, Kühlbrandt W, Robinson C, Model K (2003) Consensus structural features of purified bacterial TatABC complexes. J Mol Biol 330:277–286

    Article  CAS  PubMed  Google Scholar 

  • Palmer T, Sargent F, Berks BC (2005) Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180

    Article  CAS  PubMed  Google Scholar 

  • Perez-Rodriguez R, Fisher AC, Perlmutter JD, Hicks MG, Chanal A, Santini CL, Wu LF, Palmer T, DeLisa MP (2007) An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway. J Mol Biol 367:315–330

    Article  CAS  Google Scholar 

  • Perlman D, Halvorson HO (1983) A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167:391–409

    Article  CAS  PubMed  Google Scholar 

  • Pop O, Martin U, Abel C, Müller JP (2002) The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous Tat translocation system. J Biol Chem 277:3268–3273

    Article  CAS  PubMed  Google Scholar 

  • Porcelli I, de Leeuw E, Wallis R, van den Brink-van der Laan E, de Kruijff B, Wallace BA, Palmer T, Berks BC (2002) Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system. Biochemistry 41:13690–13697

    Article  CAS  PubMed  Google Scholar 

  • Richter S, Brüser T (2005) Targeting of unfolded PhoA to the TAT translocon of Escherichia coli. J Biol Chem 280:42723–42730

    Article  CAS  PubMed  Google Scholar 

  • Robinson C, Bolhuis A (2004) Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim Biophys Acta 1694:135–147

    Article  CAS  PubMed  Google Scholar 

  • Rodrigue A, Chanal A, Beck K, Müller M, Wu LF (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway. J Biol Chem 274:13223–13228

    Article  CAS  PubMed  Google Scholar 

  • Sanders C, Wethkamp N, Lill H (2001) Transport of cytochrome c derivatives by the bacterial Tat protein translocation system. Mol Microbiol 41:241–246

    Article  CAS  PubMed  Google Scholar 

  • Santini CL, Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu LF (2001) Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276:8159–8164

    Article  CAS  PubMed  Google Scholar 

  • Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T (1998) Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17:3640–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargent F, Stanley NR, Berks BC, Palmer T (1999) Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274:36073–36082

    Article  CAS  PubMed  Google Scholar 

  • Sargent F, Berks BC, Palmer T (2002) Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Arch Microbiol 178:77–84

    Article  CAS  PubMed  Google Scholar 

  • Sargent F, Berks BC, Palmer T (2006) Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. FEMS Microbiol Lett 254:198–207

    Article  CAS  PubMed  Google Scholar 

  • Schaerlaekens K, Lammertyn E, Geukens N, De Keersmaeker S, Anne J, Van Mellaert L (2004) Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans. J Biotechnol 112:279–288

    Article  CAS  PubMed  Google Scholar 

  • Settles AM, Yonetani A, Baron A, Bush DR, Cline K, Martienssen R (1997) Sec-independent protein translocation by the maize Hcf106 protein. Science 278:1467–1470

    Article  CAS  PubMed  Google Scholar 

  • Snyder WB, Silhavy TJ (1995) Beta-galactosidase is inactivated by intermolecular disulfide bonds and is toxic when secreted to the periplasm of Escherichia coli. J Bacteriol 177:953–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder A, Vasil AI, Zajdowicz SL, Wilson ZR, Vasil ML (2006) Role of the Pseudomonas aeruginosa PlcH Tat signal peptide in protein secretion, transcription, and cross-species Tat secretion system compatibility. J Bacteriol 188:1762–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley NR, Palmer T, Berks BC (2000) The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275:11591–11596

    Article  CAS  PubMed  Google Scholar 

  • Stanley NR, Sargent F, Buchanan G, Shi J, Stewart V, Palmer T, Berks BC (2002) Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol Microbiol 43:1005–1021

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Schierhorn A, Lindenstrauss U, Lilie H, Brüser T (2006) YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins. J Biol Chem 281:13972–13978

    Article  CAS  PubMed  Google Scholar 

  • Theg SM, Cline K, Finazzi G, Wollman FA (2005) The energetics of the chloroplast Tat protein transport pathway revisited. Trends Plant Sci 10:153–154

    Article  CAS  PubMed  Google Scholar 

  • Thiemann V, Saake B, Vollstedt A, Schäfer T, Puls J, Bertoldo C, Freudl R, Antranikian G (2006) Heterologous expression and characterization of a novel branching enzyme from the thermoalkaliphilic anaerobic bacterium Anaerobranca gottschalkii. Appl Microbiol Biotechnol 72:60–71

    Article  CAS  PubMed  Google Scholar 

  • Thomas JD, Daniel RA, Errington J, Robinson C (2001) Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol Microbiol 39:47–53

    Article  CAS  PubMed  Google Scholar 

  • Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G (2007) Export pathway selectivity of Escherichia coli twin-arginine translocation signal peptides. J Biol Chem 282:8309–8316

    Article  CAS  PubMed  Google Scholar 

  • van Wely KH, Swaving J, Freudl R, Driessen AJ (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

    Article  PubMed  Google Scholar 

  • von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21

    Article  Google Scholar 

  • Voulhoux R, Ball G, Ize B, Vasil M L, Lazdunski A, Wu L F, Filloux A (2001) Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20:6735–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrancken K, De Keersmaeker S, Geukens N, Lammertyn E, Anne J, Van Mellaert L (2007) pspA overexpression in Streptomyces lividans improves both Sec-and Tat-dependent protein secretion. Appl Microbiol Biotechnol 73:1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ (1998) A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93:93–101

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  CAS  PubMed  Google Scholar 

  • Wexler M, Bogsch EG, Klösgen RB, Palmer T, Robinson C, Berks BC (1998) Targeting signals for a bacterial Sec-independent export system direct plant thylakoid import by the ΔpH pathway. FEBS Lett 431:339–342

    Article  CAS  PubMed  Google Scholar 

  • Wexler M, Sargent F, Jack RL, Stanley NR, Bogsch EG, Robinson C, Berks BC, Palmer T (2000) TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in Sec-independent protein export. J Biol Chem 275:16717–16722

    Article  CAS  PubMed  Google Scholar 

  • Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschröder M, Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci USA 103:17927–17932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegert T, Sahm H, Sprenger GA (1996) Export of the periplasmic NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis. Arch Microbiol 166:32–41

    Article  CAS  PubMed  Google Scholar 

  • Yen MR, Tseng YH, Nguyen EH, Wu LF, Saier MH Jr (2002) Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 177:441–450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Jan R. Andreesen for the support and all the current and former members of my group for their efforts. Support by the Deutsche Forschungsgemeinschaft (grants BR 2285/1-3 and BR 2285/2-2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Brüser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüser, T. The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production. Appl Microbiol Biotechnol 76, 35–45 (2007). https://doi.org/10.1007/s00253-007-0991-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0991-z

Keywords

Navigation