Skip to main content
Log in

Magnetically recyclable, antimicrobial, and catalytically enhanced polymer-assisted “green” nanosystem-immobilized Aspergillus niger amyloglucosidase

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The present work reports the integration of polymer matrix-supported nanomaterial and enzyme biotechnology for development of industrially feasible biocatalysts. Aqueous leaf extract of Mesua ferrea L. was used to prepare silver nanoparticles distributed within a narrow size range (1–12 nm). In situ oxidative technique was used to obtain poly(ethylene glycol)-supported iron oxide nanoparticles (3–5 nm). Sonication-mediated mixing of above nanoparticles generated the immobilization system comprising of polymer-supported silver–iron oxide nanoparticles (20–30 nm). A commercially important enzyme, Aspergillus niger amyloglucosidase was coupled onto the immobilization system through sonication. The immobilization enzyme registered a multi-fold increment in the specific activity (807 U/mg) over the free counterpart (69 U/mg). Considerable initial activity of the immobilized enzyme was retained even after storing the system at room temperature as well as post-repeated magnetic recycling. Evaluation of the commendable starch saccharification rate, washing performance synergy with a panel of commercial detergents, and antibacterial potency strongly forwards the immobilized enzyme as a multi-functional industrially feasible system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews JM (2005) BSAC standardized disc susceptibility testing method (version 4). J Antimicrob Chemoth 56:60–76

    Article  CAS  Google Scholar 

  • Arica MY, Handan Y, Patir S, Denizli A (2000) Immobilization of glucoamylase onto spacer-arm attached magnetic poly methylmethacrylate microspheres: characterization and application to a continuous flow reactor. J Mol Catal B Enzym 11:127–138

    Article  CAS  Google Scholar 

  • Bai Y, Li Y, Lei L (2009) Synthesis of a mesoporous functional copolymer bead carrier and its properties for glucoamylase immobilization. Appl Microbiol Biotechnol 83:457–464

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, α and β. Method Enzymol 1:149–158

    Article  CAS  Google Scholar 

  • Bourgeat-Lami E, Lang JJ (1998) Encapsulation of inorganic particles by dispersion polymerization in polar media 1. Silica nanoparticles encapsulated by polystyrene. J Colloid Interface Sci 197:293–308

    Article  CAS  Google Scholar 

  • Cang-Rong JT, Pastorin G (2009) The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnol 20:255102, 20 pp

    Article  Google Scholar 

  • Castellanos IJ, Al-Azzam W, Griebenow K (2005) Effect of the covalent modification with poly(ethylene glycol) on α-chymotrypsin stability upon encapsulation in poly(lactic-co-glycolic) microspheres. J Pharm Sci 94:327–340

    Article  CAS  Google Scholar 

  • Crabb WD, Mitchinson C (1997) Enzymes involved in the processing of starch to sugars. Trends Biotechnol 15:349–352

    Article  CAS  Google Scholar 

  • Dhingra S, Khanna M, Pundir CS (2006) Immobilization of amylase onto alkylamine glass beads affixed inside a plastic beaker: kinetic properties and application. Indian J Chem Techn 13:119–121

    CAS  Google Scholar 

  • Dominak LM, Keating CD (2008) Macromolecular crowding improves polymer encapsulation within giant lipid vesicles. Langmuir 24:13565–13571

    Article  CAS  Google Scholar 

  • Dweck AC, Meadows T (2002) Tamanu (Calophyllum inophyllum)—the African, Asian, Polynesian and Pacific panacea. Int J Cosmet Sci 24:1–8

    Article  Google Scholar 

  • Garcia-Arellano H, Valderrama B, Saab-Rinc´n G, Vazquez-Duhalt R (2002) High temperature biocatalysis by chemically modified cytochrome c. Bioconjug Chem 13:1336–1344

    Article  CAS  Google Scholar 

  • Gupta MN (1992) Enzyme function in organic solvents. Eur J Biochem 203:25–32

    Article  CAS  Google Scholar 

  • Guzman MG, Dille J, Godet S (2008) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Proc World Acad Sci Eng Technol 33:357–364

    Google Scholar 

  • Hernáiz MJ, Sánchez-Montero JM, Sinisterra JV (1999) Modification of purified lipases from Candida rugosa with polyethylene glycol: a systematic study. Enzyme Microb Tech 24:181–190

    Article  Google Scholar 

  • Ivanova LA, Rakhimov MM, El'chits SV, Ruzieva DM, Sandul GV (1985) Activity and stability of glucoamylase preparations in different methods of immobilization. Ukr Biokhim Zh 57(1):31–36

    CAS  Google Scholar 

  • Jordan BJ, Hong R, Han G, Rana S, Rotello VM (2009) Modulation of enzyme–substrate selectivity using tetraethylene glycol functionalized gold nanoparticles. Nanotechnol 20:434004, 5 pp

    Article  Google Scholar 

  • Jorgensen JH, Turnidge JD, Washington JA (1999) Antibacterial susceptibility tests: dilution and disk diffusion methods. In: Murray PR, Pfaller MA, Tenover FC, Baron EJ, Yolken RH (eds) Manual of clinical microbiology, 7th edn. ASM Press, Washington, DC, pp 1526–1543

    Google Scholar 

  • Kaur P, Satyanarayana T (2004) Production and starch saccharification by a thermostable and neutral glucoamylase of a thermophilic mould Thermomucor indicae-seudaticae. World J Microb Biot 20:419–425

    Article  CAS  Google Scholar 

  • Kennedy JF, White CA (1985) Principles of immobilization of enzymes. In: Wiseman A (ed) Handbook of enzyme biotechnology. Ellis Harwood Ltd, Chichester, UK, pp 147–207

    Google Scholar 

  • Konwarh R, Karak N, Rai SK, Mukherjee AK (2009) Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnol 20:225107, 10 pp

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mishra R, Maheshwari R (1996) Amylases of the thermophilic fungus Thermomyces lanuginosus; their purification, properties, action on starch and response to heat. J Biosci 21:653–672

    Article  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Silver nanoparticles: synthesis and therapeutic applications. J Biomedical Nanotechnol 3(4):301–316

    Article  CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  Google Scholar 

  • Rodwell VW, Kennelly PJ (2003) Enzymes: kinetics. In: Murray RK, Granner DK, Mayes PA, Rodwell VW (eds) Harper's illustrated biochemistry, 26th edn. Lange Medical Books/McGraw-Hill, New York, pp 60–71

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  • Silva RN, Asquieri ER, Fernandes KF (2005) Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer. Process Biochem 40:1155–1159

    Article  CAS  Google Scholar 

  • Soni SK, Rao MV, Das D (1995) Studies on glucoamylase produced from Aspergillus awamori (NRRL-3112) and their effect on saccharification of potato starch. Indian J Exp Biol 33:957–961

    CAS  Google Scholar 

  • Turkoglu A, Duru EM, Mercan N, Kivrak I, Gezer K (2007) Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull) Murrill. Food Chem 101:267–273

    Article  CAS  Google Scholar 

  • Tyebkhan G (2002) Skin cleansing in neonates and infants-basics of cleansers. Indian J Pediatr 69(9):767–769

    Article  Google Scholar 

  • Vergara A, Capuano F, Paduano L, Sartorio R (2006) Lysozyme mutual diffusion in solutions crowded by poly(ethylene glycol). Macromolecules 39(13):4500–4506

    Article  CAS  Google Scholar 

  • Vihinen M, Mantsala P (1989) Microbial amylolytic enzyme. Crit Rev Biochem Mol 24:329–419

    Article  CAS  Google Scholar 

  • Vijayakumar GR, Manohar B, Divakar S (2005) Amyloglucosidase-catalyzed synthesis of n-octyl-d-glucoside-analysis using response surface methodology. Eur Food Res Technol 220:272–277

    Article  CAS  Google Scholar 

  • Wiley BY, Sun BM, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463

    Article  CAS  Google Scholar 

  • Ziolo RF, Giannelis EP, Weinstein BA, O’Horo MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Matrix-mediated synthesis of nanocrystalline ggr-Fe2O3: a new optically transparent magnetic material. Science 257:219–223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. Rocktotpal Konwarh sincerely acknowledges the receipt of his Junior Research Fellowship from the Department of Biotechnology, New Delhi. RSIC, NEHU, Shillong and CIF, and IIT Guwahati are thankfully acknowledged for the TEM imaging and magnetometric studies respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Karak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konwarh, R., Kalita, D., Mahanta, C. et al. Magnetically recyclable, antimicrobial, and catalytically enhanced polymer-assisted “green” nanosystem-immobilized Aspergillus niger amyloglucosidase. Appl Microbiol Biotechnol 87, 1983–1992 (2010). https://doi.org/10.1007/s00253-010-2658-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2658-4

Keywords

Navigation