Skip to main content
Log in

Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Milbemycin oxime has been commercialized as effective anthelmintics in the fields of animal health, agriculture, and human infections. Currently, milbemycin oxime is synthesized by a two-step chemical reaction, which involves the ketonization of milbemycins A3/A4 to yield the intermediates 5-oxomilbemycins A3/A4 using CrO3 as catalyst. Due to the low efficiency and environmental unfriendliness of the ketonization of milbemycins A3/A4, it is imperative to develop alternative strategies to produce 5-oxomilbemycins A3/A4. In this study, the atmospheric and room temperature plasma (ARTP) mutation system was first employed to treat milbemycin-producing strain Streptomyces bingchenggensis, and a mutant strain BC-120-4 producing milbemycins A3, A4, B2, and B3 as main components was obtained, which favors the construction of genetically engineered strains producing 5-oxomilbemycins. Importantly, the milbemycins A3/A4 yield of BC-120-4 reached 3,890 ± 52 g/l, which was approximately two times higher than that of the initial strain BC-109-6 (1,326 ± 37 g/l). The subsequent interruption of the gene milF encoding a C5-ketoreductase responsible for the ketonization of milbemycins led to strain BCJ60 (∆milF) with the production of 5-oxomilbemycins A3/A4 and the elimination of milbemycins A3, A4, B2, and B3. The high 5-oxomilbemycins A3/A4 yield (3,470 ± 147 g/l) and genetic stability of BCJ60 implied the potential use in industry to prepare 5-oxomilbemycins A3/A4 for the semisynthesis of milbemycins oxime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bienhoff SE, Kok DJ, Roycroft LM, Roberts ES (2013) Efficacy of a single oral administration of milbemycin oxime against natural infections of Ancylostoma braziliense in dogs. Vet Parasitol 195(1–2):102–105

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Tang Y, Xi Y, He A, Sun B, Wu H, Liang D, Jiang M, Ouyang P (2011) Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields. Biotechnol Lett 33(12):2379–2383

    Article  CAS  PubMed  Google Scholar 

  • He Y, Sun Y, Liu T, Zhou X, Bai L, Deng Z (2010) Cloning of separate meilingmycin biosynthesis gene clusters by use of acyltransferase-ketoreductase didomain PCR amplification. Appl Environ Microbiol 76(10):3283–3292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ide J, Muramatsu S, Nakada Y, Kitano N (1985) 5-Oxime derivatives of milbemycins and veterinary and agricultural use thereof. http://www.google.com/patents/US4547520, US4547520 A

  • Ikeda H, Omura S (1995) Control of avermectin biosynthesis in Streptomyces avermitilis for the selective production of a useful component. J Antibiot (Tokyo) 48(7):549–562

    Article  CAS  Google Scholar 

  • Ikeda H, Kotaki H, Omura S (1987) Genetic studies of avermectin biosynthesis in Streptomyces avermitilis. J Bacteriol 169(12):5615–5621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233(1):81–86

    Article  CAS  Google Scholar 

  • Laroussi M, Richardson JP, Dobbs FC (2002) Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology. Appl Phys Lett 81(4):772–774

    Article  CAS  Google Scholar 

  • Li G, Li HP, Wang LY, Wang S, Zhao HX, Sun WT, Xing XH, Bao CY (2008) Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl Phys Lett 92:221504

    Article  Google Scholar 

  • Lu Y, Wang L, Ma K, Li G, Zhang C, Zhao H, Lai Q, Li HP, Xing XH (2011) Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem Eng J 55(1):17–22

    Article  CAS  Google Scholar 

  • Mazodier P, Petter R, Thompson C (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171(6):3583–3585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicastro RL, Sato ME, da Silva MZ (2011) Fitness costs associated with milbemectin resistance in the two-spotted spider mite Tetranychus urticae. Int J Pest Manag 57(3):223–228

    Article  Google Scholar 

  • Nonaka K, Kumasaka C, Okamoto Y, Maruyama F, Yoshikawa H (1999) Bioconversion of milbemycin-related compounds: biosynthetic pathway of milbemycins. J Antibiot (Tokyo) 52(2):109–116

    Article  CAS  Google Scholar 

  • Nonaka K, Tsukiyama T, Okamoto Y, Sato K, Kumasaka C, Yamamoto T, Maruyama F, Yoshikawa H (2000) New milbemycins from Streptomyces hygroscopicus subsp. aureolacrimosus: fermentation, isolation and structure elucidation. J Antibiot (Tokyo) 53(7):694–704

    Article  CAS  Google Scholar 

  • Pluschkell U, Horowitz A, Ishaaya I (1999) Effect of milbemectin on the sweet potato whitefly, Bemisia tabad. Phytoparasitica 27(3):183–191

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Takiguchi Y, Mishima H, Okuda M, Terao M, Aoki A, Fukuda R (1980) Milbemycins, a new family of macrolide antibiotics: fermentation, isolation and physico-chemical properties. J Antibiot (Tokyo) 33(10):1120–1127

    Article  CAS  Google Scholar 

  • Wang XJ, Wang JD, Xiang WS, Zhang J (2009a) Three new milbemycin derivatives from Streptomyces bingchenggensis. J Asian Nat Prod Res 11(7):597–603

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Wang XC, Xiang WS (2009b) Improvement of milbemycin-producing Streptomyces bingchenggensis by rational screening of ultraviolet-and chemically induced mutants. World J Microb Biot 25(6):1051–1056

    Article  CAS  Google Scholar 

  • Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, Li HP, Gou ZX, Bao CY (2010a) Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J Appl Microbiol 108(3):851–858

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Wang CQ, Sun XL, Xiang WS (2010b) 5-ketoreductase from Streptomyces bingchengensis: overexpression and preliminary characterization. Biotechnol Lett 32(10):1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Xiang WS, Wang JD, Wang XJ, Zhang J (2007a) Two new β-class milbemycins from Streptomyces bingchenggensis: fermentation, isolation, structure elucidation and biological properties. J Antibiot (Tokyo) 60(6):351–356

    Article  CAS  Google Scholar 

  • Xiang WS, Wang JD, Wang XJ, Zhang J, Wang Z (2007b) Further new milbemycin antibiotics from Streptomyces bingchenggensis. J Antibiot (Tokyo) 60(10):608–613

    Article  CAS  Google Scholar 

  • Xiang WS, Wang JD, Wang XJ, Zhang J (2009) A novel macrolide compound from Streptomyces bingchenggensis: fermentation, isolation, structure elucidation and biological properties. J Antibiot (Tokyo) 62(4):229–231

    Article  CAS  Google Scholar 

  • Zhang J, An J, Wang JJ, Yan YJ, He HR, Wang XJ, Xiang WS (2013) Genetic engineering of Streptomyces bingchenggensis to produce milbemycins A3/A4 as main components and eliminate the biosynthesis of nanchangmycin. Appl Microbiol Biotechnol 97(23):10091–10101

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY (2014) Atmospheric and room temperature plasma (ARTP) as a newpowerful mutagenesis tool. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5755-y

    Google Scholar 

  • Zhao JH, Xu XJ, Ji MH, Cheng JL, Zhu GN (2011) Design, synthesis, and biological activities of milbemycin analogues. J Agric Food Chem 59(9):4836–4850

    Article  CAS  PubMed  Google Scholar 

  • Zong H, Zhan Y, Li X, Peng LJ, Feng FQ, Li D (2012) A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr J Microbiol Res 6(13):3154–3158

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Outstanding Youth Foundation (No. 31225024), the National Key Project for Basic Research (No. 2010CB126102), the National Key Technology R&D Program (No. 2012BAD19B06), the Program for New Century Excellent Talents in University (NCET-11-0953), the National Natural Science Foundation of China (Nos. 31372006, 31171913, and 31071750), the Outstanding Youth Foundation of Heilongjiang Province (JC201201), and Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Jing Wang or Wen-Sheng Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HY., Zhang, J., Zhang, YJ. et al. Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis . Appl Microbiol Biotechnol 98, 9703–9712 (2014). https://doi.org/10.1007/s00253-014-5970-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5970-6

Keywords

Navigation