Skip to main content
Log in

Evaluation of AgClNPs@SBA-15/IL nanoparticle-induced oxidative stress and DNA mutation in Escherichia coli

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The bactericidal effects of silver nanoparticles have been demonstrated in the past years. Recently, the new antimicrobial compounds of silver nanoparticles with different formulations have been developed. In this work, AgClNPs@SBA-15/IL as a new compound of Ag nanoparticles, was synthesized and characterized by XRD, TEM, SEM, FTIR, and EDX. The antibacterial activity and the molecular mechanism effects of AgClNPs@SBA-15/IL nanoparticles (SNPs) on Escherichia coli DH5α cells were investigated by analyzing the growth inhibitory, H2O2 level, catalase activity, DNA mutation, and plasmid copy number following treatment with AgClNPs@SBA-15/IL nanoparticles. In experimental results, the minimum inhibitory concentration (MIC) was observed in 75 μg/ml and the antibacterial efficacy (ABE) in CFU analysis was estimated 95.3 %. In bacterial cells treated with 75 and 100 μg/ml, H2O2 level significantly increased and catalase activity decreased compared with control. The random amplified polymorphic DNA (RAPD) was used to evaluate the effect of AgClNPs@SBA-15/IL nanoparticles in DNA damages and mutation in E. coli genome. RADP-PCR results indicated different banding patterns including appearance or disappearance of bands and differences in their intensity. Cluster analysis of the RAPD-PCR results based on genetic similarity showed genetic difference between E. coli cells treated with AgClNPs@SBA-15/IL nanoparticles, and control and phylogenetic tree were divided to two clusters. Plasmid copy number analysis indicated that after 8 h incubation of E. coli cells with 50, 75, and 100 μg/ml AgClNPs@SBA-15/IL nanoparticles, copy number of pET21a (+) significantly decreased compared with control which indicating DNA replication inhibition by Ag nanoparticles. In conclusion, the results of this study indicated that AgClNPs@SBA-15/IL nanoparticles can be used as an effective bactericidal agent against bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig 8

Similar content being viewed by others

References

  • Atienzar FA, Venier P, Jha AN, Depledge MH (2002) Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat Res 521:151–163

    Article  CAS  PubMed  Google Scholar 

  • Bao H, Yu X, Xu C, Li X, Li Z, Wei D, Liu Y (2015) New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One 10(3):1–10

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of protein microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–256

    Article  CAS  PubMed  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  • Cai XH, Zhu GS, Gao B, Zhang WW (2006) Preparation of Ag/SBA-15 nanocomposite and its bactericidal activity. Chem J Chin Univ 27:2042–2044

    Google Scholar 

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Cell Press 28:580–588

    CAS  Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    Article  CAS  PubMed  Google Scholar 

  • Gavanji S, Abdul Aziz H, Larki B, Mojiri A (2013) Bioinformatics prediction of interaction of silver nitrate and nano silver on catalase and nitrat reductase. Sci Res Environ Sci 1:26–35

    Google Scholar 

  • Heidary Shayesteh T, Khajavi F, Ghasemi H, Hossini Zijoud SM, Ranjbar A (2014) Effects of silver nanoparticle (AgNP) on oxidative stress, liver function in rat: hepatotoxic or hepato protective? Issues Biol Sci Pharm Res 2:40–44

    Google Scholar 

  • Hejazi MS, Karimi F, Mehdizadeh Aghdam E, Barzegari A, Farshdosti Hagh M, Parvizi M, Mahmoodi Azar L, Hejazi MA (2009) Cytoplasmic expression of recombinant interleukin-2 and interleukin-4 proteins results in hydrogen peroxide accumulation and reduction in catalase activity in Escherichia coli. Daru 2:64–71

    Google Scholar 

  • Hsueh YH, Lin KS, Ke WJ, Hsieh CT, Chiang CL, Tzou DY, Liu ST (2015) The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag + ions. PLoS One 10:1–17

    Google Scholar 

  • Jain J, Arora S, Rajwade J, Omray P, Khandelwal S, Paknikar K (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401

    Article  CAS  PubMed  Google Scholar 

  • Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A (2012) Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int J Nanomedicine 7:1805–1818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Kuk E, Nam Yu K, Kim JH, Jin Park J, Jang Lee H, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    CAS  PubMed  Google Scholar 

  • Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354

    Article  Google Scholar 

  • Lee C, Kim J, Shin SG, Hwang S (2006) Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 123:273–280

    Article  CAS  PubMed  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YH, YB C (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Lin JJ, Lin WC, Li DS, Lin CY, Hsu HS (2013) Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. Appl Mater Interfaces 5:433–443

    Article  CAS  Google Scholar 

  • Liong M, France B, Bradley KA, Zink JI (2009) Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater 21:1–6

    Article  Google Scholar 

  • Lushchak VI (2001) Oxidative stress and mechanisms of protection against it in bacteria. Biochem Mosc 66:592–609

    Article  Google Scholar 

  • Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P (2014) Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf 115:359–367

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikat K, Kunisak S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehdizadeh Aghdam E, Mahmoudi Azar L, Barzegari A, Karimi F, Mesbahfar M, Samadi N, Hejazi MS (2012) Effect of periplasmic expression of recombinant mouse interleukin-4 on hydrogen peroxide concentration and catalase activity in Escherichia coli. Gene 511:455–460

    Article  CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Tapia Ramírez J, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, B V, Bhadra MP, Sreedhar B, Patra CR (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4(3):316–335

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong TM, Song B, Qian HW, Wu ZL, Whong WZ (1998) Detection of genomic instability in lung cancer tissues by random amplified polymorphic DNA analysis. Carcinogenesis 19:233–235

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticle? A study of the nanoparticles depend on the shape of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandian SRK, Deepak V, Kalishwaralal K, Viswanathan P, Gurunathan S (2010) Mechanism of bactericidal activity of silver nitrate-a concentration dependent bifunctional molecule. Braz J Microbiol 41:805–809

    Article  CAS  Google Scholar 

  • Parandhaman T, Das A, Ramalingam B, Samanta D, Sastry TP, Mandal AB, Dasa SK (2015) Antimicrobial behavior of biosynthesized silica-silver nanocomposite for disinfection of water: a mechanistic perspective. Hazard Mater 290:117–126

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009:76–83

    Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson AK, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350

    Article  CAS  Google Scholar 

  • Rostamnia S, Hassankhani A, Hossieni HG, Xin H (2014) Brønsted acidic hydrogensulfate ionic liquid immobilized SBA-15: [MPIm][HSO4]@SBA-15 as an environmentally friendly, metal- and halogen-free recyclable catalyst for Knoevenagel–Michael-cyclization processes. J Mol Catal A Chem 395:463–469

    Article  CAS  Google Scholar 

  • Sayari A (1996) Catalysis by crystalline mesoporous molecular sieves. Chem Mater 8:1840–1852

    Article  CAS  Google Scholar 

  • Semchyshyn H, Lushchak V, Storey K (2005) Possible reasons for difference in sensitivity to oxygen of two Escherichia coli strains. Biochemistry (Mosc) 70:424–431

    Article  CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103 (9pp)

    Article  Google Scholar 

  • Singh R, Smitha MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. Nanosci Nanotechnol 14:1–12

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Soo-Hwan K, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:77–85

    Google Scholar 

  • Spooner R, Yilmaz O (2011) The Role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci 12:334–352

  • Sweet MJ, Chessher A, Singleton I (2012) Review: metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. Adv Appl Microbiol 80:113–142

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid raintreated bean plants- protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang L, He H, Zhang C, Sun L, Liu S, Yue R (2014) Excellent antimicrobial properties of silver loaded mesoporous silica SBA-15. Appl Microbiol 116:1106–1118

    Article  CAS  Google Scholar 

  • Wilhelm J, Pingoud A, Hahn M (2003) Real-time PCR-based method for the estimation of genome sizes. Nucleic Acids Res 31:1–6

    Article  Google Scholar 

  • Yang Y, Wang J, Xiu Z, Alvarez PJJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32:1488–1494

    CAS  PubMed  Google Scholar 

  • Zhang B, Zhai W, Liu R, Yu Z, Shen H, Hu X (2015) Evaluation on the toxic effects of nano Ag to catalase. Nanosci Nanotechnol 15:1473–1479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the University of Maragheh (grant no. 94367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrokh Karimi.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, F., Dabbagh, S., Alizadeh, S. et al. Evaluation of AgClNPs@SBA-15/IL nanoparticle-induced oxidative stress and DNA mutation in Escherichia coli . Appl Microbiol Biotechnol 100, 7161–7170 (2016). https://doi.org/10.1007/s00253-016-7593-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7593-6

Keywords

Navigation