Skip to main content
Log in

The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Increasing evidence has revealed a close interplay between the gut bacterial communities and host growth performance. However, until recently, studies generally ignored the contribution of eukaryotes, endobiotic organisms. To fill this gap, we used Illumina sequencing technology on eukaryotic 18S rRNA gene to compare the structures of gut eukaryotic communities among cohabitating retarded, overgrown, and normal shrimp obtained from identically managed ponds. Results showed that a significant difference between gut eukaryotic communities differed significantly between water and intestine and among three shrimp categories. Structural equation modeling revealed that changes in the gut eukaryotic community were positively related to digestive enzyme activities, which in turn influenced shrimp growth performance (λ = 0.97, P < 0.001). Overgrown shrimp exhibited a more complex and cooperative gut eukaryotic interspecies interaction than retarded and normal shrimp, which may facilitate their nutrient acquisition efficiency. Notably, the distribution of dominant eukaryotic genera and shifts in keystone species were closely concordant with shrimp growth performance. In summary, this study provides an integrated overview on direct roles of gut eukaryotic communities in shrimp growth performance instead of well-studied bacterial assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcock J, Maley CC, Aktipis C (2014) Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36:940–949

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen LOB, Nielsen HV, Stensvold CR (2013) Waiting for the human intestinal Eukaryotome. ISME J 7:1253–1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, Vos WMD, Brunak S, Doré J, Consortium M, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MT (2012) The contributing role of the intestinal microbiota in stressor-induced increases in susceptibility to enteric infection and systemic immunomodulation. Horm Behav 62:286–294

    Article  CAS  PubMed  Google Scholar 

  • Bennett G, Malone M, Sauther ML, Cuozzo FP, White B, Nelson KE, Stumpf RM, Knight R, Leigh SR, Amato KR (2016) Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am J Primatol 78:883–892

    Article  CAS  PubMed  Google Scholar 

  • Benny GL, Humber RA, Voigt K (2014) Zygomycetous fungi: phylum Entomophthoromycota and subphyla Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. In: Mclaughlin DJ, Spatafora JW (eds) Systematics and evolution. Springer, Berlin, Part A, pp 209–250

    Chapter  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J (2010a) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R (2010b) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA (2004) Using ANOVA to analyze microarray data. Biotechniques 37:173–177

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143

  • Combes S, Fortun-Lamothe L, Cauquil L, Gidenne T (2013) Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal 7:1429–1439

  • Core Team R (2013) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna http://www.R-project.org/

    Google Scholar 

  • De Lartigue G, de La Serre CB, Raybould HE (2011) Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 105:100–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J (2012) Molecular ecological network analyses. BMC Bioinformatics 13:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Filippo CD, Cavalieri D, Paola MD, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastro Hepat 9:577–589

    Article  CAS  Google Scholar 

  • Forberg T, Sjulstad EB, Bakke I, Olsen Y, Hagiwara A, Sakakura Y, Vadstein O (2016) Correlation between microbiota and growth in mangrove killifish (Kryptolebias marmoratus) and Atlantic cod (Gadus morhua). Sci Rep 6:21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23

    Article  Google Scholar 

  • Heitman J (2011) Microbial pathogens in the fungal kingdom. Fungal Biology Reviews 25:48–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Acosta M, Gutiérrez-Salazar GJ, Guzmán-Sáenz FM, Aguirre-Guzmán G, Alvarez-González CA, Lópezace-Vedo EA, Fitzsimmons K (2016) The effects of Yucca schidigera and Quillaja saponaria on growth performance and enzymes activities of juvenile shrimp Litopenaeus vannamei cultured in low-salinity water. Lat Am J Aquat Res 44:121–128

    Article  Google Scholar 

  • Huertas IE, Lubián LM (1998) Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Can J Bot 76:1104–1108

    CAS  Google Scholar 

  • Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D (2014) Rethinking “Enterotypes”. Cell Host Microbe 16:433–437

    Article  CAS  PubMed  Google Scholar 

  • Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27:201–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability, and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N (2015) Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep 5:7980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukeš J, Stensvold CR, Jirkůpomajbíková K, Wegener PL (2015) Are human intestinal eukaryotes beneficial or commensals? PLoS Pathog 11:e1005039

    Article  PubMed  PubMed Central  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  • Manian FA, Bryant A (2013) Does Candida species overgrowth protect against Clostridium difficile infection? Clin Infect Dis 56:464–465

    Article  PubMed  Google Scholar 

  • Massana R, Logares R (2013) Eukaryotic versus prokaryotic marine picoplankton ecology. Environ Microbiol 15:1254–1261

    Article  PubMed  Google Scholar 

  • Mej N (2003) The structure and function of complex networks. SIAM Rev 45:40–45

    Google Scholar 

  • Mélida H, Sain D, Stajich JE, Bulone V (2015) Deciphering the uniqueness of Mucoromycotina cell walls by combining biochemical and phylogenomic approaches. Environ Microbiol 17:1649–1662

    Article  PubMed  Google Scholar 

  • Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature 442:259–264

    Article  CAS  PubMed  Google Scholar 

  • Newell PD, Douglas AE (2013) Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microb 80:788–796

    Article  Google Scholar 

  • Parfrey LW, Walters WA, Knight R (2011) Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbiol 2:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Pataky Z, Bobbioniharsch E, Hadengue A, Carpentier A, Golay A (2009) Gut microbiota, responsible for our body weight? Rev Med Suisse 5:662–666

    PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  Google Scholar 

  • Ramayo-Caldas Y, Mach N, Lepage P, Levenez F, Denis C, Lemonnier G, Leplat JJ, Billon Y, Berri M, Doré J (2016) Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J 10:2973–2977

    Article  PubMed  Google Scholar 

  • Richards JD, Gong J, De Lange CFM (2005) The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: current understanding, possible modulations, and new technologies for ecological studies. Can J Anim Sci 85:421–435

    Article  Google Scholar 

  • Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, Berry D (2017) Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol 19:95–105

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:24–29

    Google Scholar 

  • Rook GAW, Raison CL, Lowry CA (2014) Microbial ‘old friends’, immunoregulation and socioeconomic status. Clin Exp Immunol 177:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samorì G, Samorì C, Guerrini F, Pistocchi R (2013) Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res 47:791–801

    Article  PubMed  Google Scholar 

  • Scanlan PD, Stensvold CR, Heilig HGHJ, Vos WMD, O’Toole PW, Cotter PD (2014) The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol Ecol 90:326–330

    Article  CAS  PubMed  Google Scholar 

  • Sha Y, Liu M, Wang B, Jiang K, Sun G, Wang L (2016) Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates. Microbiology 85:109–115

    Article  CAS  Google Scholar 

  • Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JB (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukantak N (2010) Role of gastrointestinal microbiota in fish. Aquacult Rse 41:1553–1573

    Article  Google Scholar 

  • Tacon AGJ, Cody JJ, Conquest LD, Divakaran S, Forster IP, Decamp OE (2002) Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquac Nutr 8:121–137

    Article  Google Scholar 

  • Takeda I, Tamano K, Yamane N, Ishii T, Ai M, Umemura M, Terai G, Baker SE, Koike H, Machida M (2014) Genome sequence of the Mucoromycotina fungus Umbelopsis isabellina, an effective producer of lipids. Genome Announ 2:e00071–e00014

    Article  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  CAS  PubMed  Google Scholar 

  • Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S, Softic S, Deng L, Bry L, Gordon JI, Kahn CR (2015) Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab 22:516–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannette RL, Fukami T (2014) Historical contingency in species interactions: towards niche-based predictions. Ecol Lett 17:115–124

    Article  PubMed  Google Scholar 

  • Voudanta E, Kormas KA, Monchy S, Delegrange A, Vincent D, Genitsaris S, Christaki U (2016) Mussel biofiltration effects on attached bacteria and unicellular eukaryotes in fish-rearing seawater. PeerJ 4:e1829

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams RJ, Howe A, Hofmockel KS (2014) Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front Microbiol 5:358

    Article  PubMed  PubMed Central  Google Scholar 

  • Witt U, Koske PH, Kuhlmann D, Lenz J, Nellen W (1981) Production of Nannochloris spec. (Chlorophyceae) in large-scale outdoor tanks and its use as a food organism in marine aquaculture. Aquaculture 23:171–181

    Article  Google Scholar 

  • Xiong J, Wang K, Wu J, Qiuqian L, Yang K, Qian Y, Zhang D (2015) Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl Microbiol Biotechnol 99:6911–6919

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Dai W, Li C (2016) Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl Microbiol Biotechnol 100:6947–6954

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Zhu J, Dai W, Dong C, Qiu Q, Li C (2017a) Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease. Environ Microbiol 19:1490–1501

    Article  PubMed  Google Scholar 

  • Xiong J, Dai W, Zhu J, Liu K, Dong C, Qiu Q (2017b) The underlying ecological processes of gut microbiota among cohabitating retarded, overgrown and normal shrimp. Microb Ecol 73:988–999

    Article  PubMed  Google Scholar 

  • Yakoob J, Jafri W, Beg MA, Abbas Z, Naz S, Islam M, Khan R (2010) Blastocystis hominis and Dientamoeba fragilis in patients fulfilling irritable bowel syndrome criteria. Parasitol Res 107:679–684

    Article  PubMed  Google Scholar 

  • Zhu J, Dai W, Qiu Q, Dong C, Zhang J, Xiong J (2016) Contrasting ecological processes and functional compositions between intestinal bacterial community in healthy and diseased shrimp. Microb Ecol 72:975–985

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Editor Ursula Kües and the two anonymous reviewers for their constructive comments. This work was supported by the Zhejiang Province Public Welfare Technology Application Research Project (2016C32063), and Education Department (Y201327177), the Project of Science and Technology Department of Ningbo (2017C10044), and the K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinyong Zhu or Jinbo Xiong.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Yu, W., Zhang, J. et al. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp. Appl Microbiol Biotechnol 101, 6447–6457 (2017). https://doi.org/10.1007/s00253-017-8388-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8388-0

Keywords

Navigation