Skip to main content
Log in

Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Avermectins, produced by Streptomyces avermitilis, are important antiparasitic agents. The use of traditional microbial breeding methods for this organism has been limited by the low-throughput shake flask-based screening process. The unique growth cycle of actinomycetes makes the establishment of a reliable high-throughput screening (HTS) process difficult. To enhance the efficiency of screening strains with high yields of avermectin, a HTS process aided by fluorescence-activated cell sorting (FACS) was established. Four different spore solutions were investigated for maintaining a relatively high viability of spores. Propidium iodide (PI) and fluorescein diacetate (FDA) were used to discriminate between dead and live spores using the FACS system. Spores stained with 7-μg/mL PI and 15-μg/mL FDA at 4 °C in the dark for 30 min resulted in optimum sorting. Spores were treated by atmospheric and room temperature plasma (ARTP). Single live spores were sorted and sprayed into 96-well microtiter plates containing 50 μL of solid agar culture medium. Solid-liquid combinatorial microculture was used for high-throughput avermectin culture. A high-titer avermectin producer (G9) was obtained from 5760 mutants after mutagenesis and HTS. Compared with the original strain, the titer was improved by 18.9% on flask culture and 20.6% on fermenter, respectively. The HTS process established in this study could easily be transferred to other similar target products produced by actinomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Funding

This work was supported by the Major State Basic Research Development Program of China (973 Program, 2013CB733602), the National Natural Science Foundation of China (21390204, 21406087), the Key Research and Development Program of Jiangsu Province (BE2016689), the Fundamental Research Funds for the Central Universities (JUSRP51701A), the Six Talent Peaks Project in Jiangsu Province (2015-JY-005), the Distinguished Professor Project of Jiangsu Province, and the 111 Project (111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Zhou.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Luo, Z., Zeng, W. et al. Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Appl Microbiol Biotechnol 102, 703–712 (2018). https://doi.org/10.1007/s00253-017-8658-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8658-x

Keywords

Navigation