Skip to main content
Log in

Effective electrode array in mapping karst hazards in electrical resistivity tomography

  • Original Article
  • Published:
Environmental Geology

Abstract.

When conducting environmental and engineering investigations in karst terranes, engineers and geologists often supplement exploratory borehole results with data gathered from surface geophysics to reduce the site-characterization cost and establish the most useful locations for borings or samples. When conducting resistivity investigations, a frequently occurring problem is the need to determine which of the many existing electrode configurations will respond best to the material changes in karst features. Each array has its advantages and disadvantages in terms of depth of investigation, sensitivity to horizontal or vertical variations, and signal strength. In the application presented in this paper, numerical forward modeling was conducted of dipole–dipole, Schlumberger, and Wenner arrays, and they produced markedly different anomaly shapes for a conceptual model of the development of a cover-collapse sinkhole. The resolution of the three above-mentioned arrays was further evaluated along a section of I-70 near Frederick, Maryland, where a sinkhole had occurred in the median of the highway. The image from the dipole–dipole array appeared to be better than those from the Wenner and Schlumerger arrays in displaying the sinkhole collapse area. However, they are all less effective than a mixed array, in which apparent resistivities from all the three arrays are combined and processed together in the model. Because the mixed array requires a significant increase in data collection, the dipole–dipole array appears to be the most effective and less costly configuration in mapping karst hazards areas. This conclusion was then confirmed by two case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Beck, B.F. & Adams, A.L. Effective electrode array in mapping karst hazards in electrical resistivity tomography. Env Geol 42, 922–928 (2002). https://doi.org/10.1007/s00254-002-0594-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-002-0594-z

Navigation