Skip to main content

Advertisement

Log in

The current status of MRI in the pre-operative assessment of intramedullary conventional appendicular osteosarcoma

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Osteosarcoma is the commonest primary malignant bone tumour in children and adolescents, the majority of cases being conventional intra-medullary high-grade tumours affecting the appendicular skeleton. Treatment is typically with a combination of neo-adjuvant chemotherapy, tumour resection with limb reconstruction and post-operative chemotherapy. The current article reviews the role of magnetic resonance imaging (MRI) in the pre-operative assessment of high-grade central conventional osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bielack S, Kempf-Bielack B, Von Kalle T, Schwarz R, Wirth T, Kager L, et al. Controversies in childhood osteosarcoma. Minerva Pediatr. 2013;65(2):125–48.

    CAS  PubMed  Google Scholar 

  2. Kundu ZS. Classification, imaging, biopsy and staging of osteosarcoma. Indian J Orthop. 2014;48(3):238–46.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Biazzo A, De Paolis M. Multidisciplinary approach to osteosarcoma. Acta Orthop Belg. 2016;82(4):690–8.

    CAS  PubMed  Google Scholar 

  4. Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management. Rheumatol Ther. 2016;3(2):221–43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Taran S, Taran R, Malipatil N. Pediatric osteosarcoma: an updated review. Indian J Med Paediatr Oncol. 2017;38(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. SICOT-J. 2018;4:12.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gerrand C, Athanasou N, Brennan B, Grimer R, Judson I, Morland B, et al. UK guidelines for the management of bone sarcomas. Clin Sarcoma Res. 2016;6:7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fletcher CDM, Unni KK, Mertens F, Weltgesundheitsorganisation, International Agency for Research on Cancer, editors. Pathology and genetics of tumours of soft tissue and bone; [the WHO classification of tumours of soft tissue and bone presented in this book reflects the views of a working group that convened for an editorial and consensus conference in Lyon, France, April 24–28, 2002]. Lyon: IARC Press; 2002. 427 p. (World Health Organization Classification of tumours).

  9. Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125(4):555–81.

    Article  PubMed  Google Scholar 

  10. Gao Z-H, Yin J-Q, Liu D-W, Meng Q-F, Li J-P. Preoperative easily misdiagnosed telangiectatic osteosarcoma: clinical. Cancer Imaging. 2013;13(4):520–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nakajima H, Sim FH, Bond JR, Unni KK. Small cell osteosarcoma of bone. Review of 72 cases. Cancer. 1997;79(11):2095–106.

    Article  CAS  PubMed  Google Scholar 

  12. Wang C-S, Yin Q-H, Liao J-S, Lou J-H, Ding X-Y, Zhu Y-B. Giant cell-rich osteosarcoma in long bones: clinical, radiological and pathological features. Radiol Med (Torino). 2013;118(8):1324–34.

    Article  Google Scholar 

  13. Jeys LM, Kulkarni A, Grimer RJ, Carter SR, Tillman RM, Abudu A. Endoprosthetic reconstruction for the treatment of musculoskeletal tumors of the appendicular skeleton and pelvis. J Bone Jt Surg. 2008;90(6):1265–71.

    Article  CAS  Google Scholar 

  14. Capanna R, Scoccianti G, Campanacci DA, Beltrami G, De Biase P. Surgical technique: extraarticular knee resection with prosthesis–proximal tibia-extensor apparatus allograft for tumors invading the knee. Clin Orthop Relat Res. 2011;469(10):2905–14.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yao W, Cai Q, Wang J, Gao S. Treatment of osteosarcoma around the knee in skeletally immature patients. Oncol Lett [Internet]. 2017 [cited 2018 Jun 27]; Available from: http://www.spandidos-publications.com. https://doi.org/10.3892/ol.2017.6903

  16. Saifuddin A. The accuracy of imaging in the local staging of appendicular osteosarcoma. Skelet Radiol. 2002;31(4):191–201.

    Article  Google Scholar 

  17. Eftekhari F. Imaging Assessment of Osteosarcoma in Childhood and Adolescence: Diagnosis, Staging, and Evaluating Response to Chemotherapy. In: Jaffe N, Bruland OS, Bielack S, editors. Pediatric and Adolescent Osteosarcoma [Internet]. Boston, MA: Springer US; 2009 [cited 2018 Jun 27]. p. 33–62. Available from: http://link.springer.com/10.1007/978-1-4419-0284-9_3

  18. Kaste SC. Imaging pediatric bone sarcomas. Radiol Clin N Am. 2011;49(4):749–65.

    Article  PubMed  Google Scholar 

  19. Wang C-S, Yin Q-H, Liao J-S, Lou J-H, Ding X-Y, Zhu Y-B, et al. Primary diaphyseal osteosarcoma in long bones: imaging features and tumor characteristics. Eur J Radiol. 2012;81(11):3397–403.

    Article  PubMed  Google Scholar 

  20. Iwata S, Nakamura T, Gaston CL, Carter SR, Tillman RM, Abudu A, et al. Diaphyseal osteosarcomas have distinct clinical features from metaphyseal osteosarcomas. Eur J Surg Oncol EJSO. 2014;40(9):1095–100.

    Article  CAS  PubMed  Google Scholar 

  21. Suresh S, Saifuddin A. Radiological appearances of appendicular osteosarcoma: a comprehensive pictorial review. Clin Radiol. 2007;62(4):314–23.

    Article  CAS  PubMed  Google Scholar 

  22. Yen C-H, Chang C-Y, Teng MM-H, Wu H-TH, Chen PC-H, Chiou H-J, et al. Different and identical features of chondroblastic osteosarcoma and chondrosarcoma: highlights on radiography and magnetic resonance imaging. J Chin Med Assoc. 2009;72(2):76–82.

    Article  PubMed  Google Scholar 

  23. Yakushiji T, Oka K, Sato H, Yorimitsu S, Fujimoto T, Yamashita Y, et al. Characterization of chondroblastic osteosarcoma: gadolinium-enhanced versus diffusion-weighted MR imaging. J Magn Reson Imaging. 2009;29(4):895–900.

    Article  PubMed  Google Scholar 

  24. Zeitoun R, Shokry AM, Ahmed Khaleel S, Mogahed SM. Osteosarcoma subtypes: magnetic resonance and quantitative diffusion-weighted imaging criteria. J Egypt Natl Cancer Inst. 2018;30(1):39–44.

    Article  Google Scholar 

  25. Chen Y, Yu X, Xu S, Xu M, Song R. Impacts of tumor location, nature and bone destruction of extremity osteosarcoma on selection of limb salvage operative procedure: selection of limb salvage operation protocol for osteosarcoma. Orthop Surg. 2016;8(2):139–49.

    Article  PubMed  Google Scholar 

  26. Shahid M, Albergo N, Purvis T, Heron K, Gaston L, Carter S, et al. Management of sarcomas possibly involving the knee joint when to perform extra-articular resection of the knee joint and is it safe? Eur J Surg Oncol EJSO. 2017;43(1):175–80.

    Article  CAS  PubMed  Google Scholar 

  27. Shiga NT, Del Grande F, Lardo O, Fayad LM. Imaging of primary bone tumors: determination of tumor extent by non-contrast sequences. Pediatr Radiol. 2013;43(8):1017–23.

    Article  PubMed  Google Scholar 

  28. Jin T, Deng Z-P, Liu W-F, Xu H-R, Li Y, Niu X-H. Magnetic resonance imaging for the assessment of long bone tumors. Chin Med J. 2017;130(21):2547.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thompson MJ, Shapton JC, Punt SE, Johnson CN, Conrad EU. MRI identification of the osseous extent of pediatric bone sarcomas. Clin Orthop. 2018;476(3):559–64.

    Article  PubMed  Google Scholar 

  30. Putta T, Gibikote S, Madhuri V, Walter N. Accuracy of various MRI sequences in determining the tumour margin in musculoskeletal tumours. Pol J Radiol. 2016;81:540–8.

    PubMed  PubMed Central  Google Scholar 

  31. Deng Z, Ding Y, Hao L, Zhang Q, Su Y, Niu X. Marrow signal mimicking tumor on MRI T1-weighted imaging after neoadjuvant chemotherapy in extremity osteosarcomas. J Bone Oncol. 2017;6:22–6.

    Article  PubMed  Google Scholar 

  32. Kohl CA, Chivers FS, Lorans R, Roberts CC, Kransdorf MJ. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution’s experience. Skelet Radiol. 2014;43(8):1079–84.

    Article  Google Scholar 

  33. Del Grande F, Tatizawa-Shiga N, Jalali Farahani S, Chalian M, Fayad LM. Chemical shift imaging: preliminary experience as an alternative sequence for defining the extent of a bone tumor. Quant Imaging Med Surg. 2014;4(3):173–80.

    PubMed  PubMed Central  Google Scholar 

  34. Enneking WF, Kagan A. “Skip” metastases in osteosarcoma. Cancer. 1975;36(6):2192–205.

    Article  CAS  PubMed  Google Scholar 

  35. Kager L, Zoubek A, Kastner U, Kempf-Bielack B, Potratz J, Kotz R, et al. Skip metastases in osteosarcoma: experience of the cooperative osteosarcoma study group. J Clin Oncol. 2006;24(10):1535–41.

    Article  PubMed  Google Scholar 

  36. Sajadi KR, Heck RK, Neel MD, Rao BN, Daw N, Rodriguez-Galindo C, et al. The incidence and prognosis of osteosarcoma skip metastases. Clin Orthop. 2004;426:92–6.

    Article  Google Scholar 

  37. Bhagia SM, Grimer RJ, Davies AM, Mangham DC. Scintigraphically negative skip metastasis in osteosarcoma. Eur Radiol. 1997;7(9):1446–8.

    Article  CAS  PubMed  Google Scholar 

  38. Walden MJ, Murphey MD, Vidal JA. Incidental enchondromas of the knee. Am J Roentgenol. 2008;190(6):1611–5.

    Article  Google Scholar 

  39. Hong ED, Carrino JA, Weber KL, Fayad LM. Prevalence of shoulder enchondromas on routine MR imaging. Clin Imaging. 2011;35(5):378–84.

    Article  PubMed  Google Scholar 

  40. Picci P, Sangiorgi L, Bahamonde L, Aluigi P, Bibiloni J, Zavatta M, et al. Risk factors for local recurrences after limb-salvage surgery for high-grade osteosarcoma of the extremities. Ann Oncol Off J Eur Soc Med Oncol. 1997;8(9):899–903.

    Article  CAS  Google Scholar 

  41. Wuisman P, Enneking WF. Prognosis for patients who have osteosarcoma with skip metastasis. J Bone Joint Surg Am. 1990;72(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  42. Jawad MU, Scully SP. In brief: classifications in brief: enneking classification: benign and malignant tumors of the musculoskeletal system. Clin Orthop. 2010;468(7):2000–2.

    Article  PubMed  Google Scholar 

  43. van Trommel MF, Kroon HM, Bloem JL, Hogendoorn PC, Taminiau AH. MR imaging-based strategies in limb salvage surgery for osteosarcoma of the distal femur. Skelet Radiol. 1997;26(11):636–41.

    Article  Google Scholar 

  44. Wu HTH, Chang CY, Lin J, Chen TH, Chen WM, Wang SF. Preoperative MR imaging assessment of osteosarcoma: a radiological – surgical correlation. Chin J Radiol. 2001;26:9–16.

    Google Scholar 

  45. Jeon D-G, Song WS, Kong C-B, Cho WH, Cho SH, Lee JD, et al. Role of surgical margin on local recurrence in high-risk extremity osteosarcoma: a case-controlled study. Clin Orthop Surg. 2013;5(3):216.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Masrouha KZ, Musallam KM, Samra AB, Tawil A, Haidar R, Chakhachiro Z, et al. Correlation of non-mass-like abnormal MR signal intensity with pathological findings surrounding pediatric osteosarcoma and Ewing’s sarcoma. Skelet Radiol. 2012;41(11):1453–61.

    Article  Google Scholar 

  47. Jones KB, Ferguson PC, Lam B, Biau DJ, Hopyan S, Deheshi B, et al. Effects of neoadjuvant chemotherapy on image-directed planning of surgical resection for distal femoral osteosarcoma. J Bone Joint Surg Am. 2012;94(15):1399–405.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Simon MA, Hecht JD. Invasion of joints by primary bone sarcomas in adults. Cancer. 1982;50(8):1649–55.

    Article  CAS  PubMed  Google Scholar 

  49. Quan GMY, Slavin JL, Schlicht SM, Smith PJ, Powell GJ, Choong PFM. Osteosarcoma near joints: assessment and implications. J Surg Oncol. 2005;91(3):159–66.

    Article  PubMed  Google Scholar 

  50. Alkalay D, Kollender Y, Mozes M, Meller I. Transarticular tumor invasion via ligamentum teres. A clinical-pathologic study of 12 patients. Acta Orthop Scand. 1998;69(1):29–30.

    Article  CAS  PubMed  Google Scholar 

  51. Li X, Zhang Z, Latif M, Chen W, Cui J, Peng Z. Synovium as a widespread pathway to the adjacent joint in undifferentiated high-grade pleomorphic sarcoma of the tibia: a case report. Medicine (Baltimore). 2018;97(8):e9870.

    Article  Google Scholar 

  52. Abdelwahab IF, Miller TT, Hermann G, Klein MJ, Kenan S, Lewis MM. Transarticular invasion of joints by bone tumors: hypothesis. Skelet Radiol. 1991;20(4):279–83.

    Article  CAS  Google Scholar 

  53. Schima W, Amann G, Stiglbauer R, Windhager R, Kramer J, Nicolakis M, et al. Preoperative staging of osteosarcoma: efficacy of MR imaging in detecting joint involvement. AJR Am J Roentgenol. 1994;163(5):1171–5.

    Article  CAS  PubMed  Google Scholar 

  54. Kaste SC, Pratt CB, Cain AM, Jones-Wallace DJ, Rao BN. Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis: imaging features. Cancer. 1999;86(8):1602–8.

    Article  CAS  PubMed  Google Scholar 

  55. Miller BJ, Cram P, Lynch CF, Buckwalter JA. Risk factors for metastatic disease at presentation with osteosarcoma: an analysis of the SEER database. J Bone Jt Surg-Am Vol. 2013;95(13):e89 1–8.

    Article  Google Scholar 

  56. Marko TA, Diessner BJ, Spector LG. Prevalence of metastasis at diagnosis of osteosarcoma: an international comparison: prevalence of metastatic osteosarcoma at diagnosis. Pediatr Blood Cancer. 2016;63(6):1006–11.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Salah S, Ahmad R, Sultan I, Yaser S, Shehadeh A. Osteosarcoma with metastasis at initial diagnosis: current outcomes and prognostic factors in the context of a comprehensive cancer center. Mol Clin Oncol. 2014;2(5):811–6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Roberts CC, Daffner RH, Weissman BN, Bancroft L, Bennett DL, Blebea JS, et al. ACR appropriateness Criteria® on metastatic bone disease. J Am Coll Radiol. 2010;7(6):400–9.

    Article  PubMed  Google Scholar 

  59. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol. 2001;177(1):229–36.

    Article  CAS  Google Scholar 

  60. Byun BH, Kong C-B, Lim I, Kim BI, Choi CW, Song WS, et al. Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skelet Radiol. 2013;42(12):1673–81.

    Article  Google Scholar 

  61. Hurley C, McCarville MB, Shulkin BL, Mao S, Wu J, Navid F, et al. Comparison of 18 F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma: 18 F-FDG-PET-CT for staging osteosarcoma. Pediatr Blood Cancer. 2016;63(8):1381–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Smets AM, Deurloo EE, Slager TJE, Stoker J, Bipat S. Whole-body magnetic resonance imaging for detection of skeletal metastases in children and young people with primary solid tumors—systematic review. Pediatr Radiol. 2018;48(2):241–52.

    Article  CAS  PubMed  Google Scholar 

  63. Paruthikunnan SM, Kadavigere R, Karegowda LH. Accuracy of whole-body DWI for metastases screening in a diverse group of malignancies: comparison with conventional cross-sectional imaging and nuclear scintigraphy. Am J Roentgenol. 2017;209(3):477–90.

    Article  Google Scholar 

  64. Jacobs MA, Macura KJ, Zaheer A, Antonarakis ES, Stearns V, Wolff AC, et al. Multiparametric whole-body MRI with diffusion-weighted imaging and ADC mapping for the identification of visceral and osseous metastases from solid tumors. Acad Radiol [Internet]. 2018 [cited 2018 Jun 27]; Available from: http://linkinghub.elsevier.com/retrieve/pii/S1076633218300953

  65. Saifuddin A, Mitchell R, Burnett SJ, Sandison A, Pringle JA. Ultrasound-guided needle biopsy of primary bone tumours. J Bone Joint Surg (Br). 2000;82(1):50–4.

    Article  CAS  Google Scholar 

  66. Taupin T, Decouvelaere A-V, Vaz G, Thiesse P. Accuracy of core needle biopsy for the diagnosis of osteosarcoma: a retrospective analysis of 73patients. Diagn Interv Imaging. 2016;97(3):327–31.

    Article  CAS  PubMed  Google Scholar 

  67. Interiano RB, Malkan AD, Loh AHP, Hinkle N, Wahid FN, Bahrami A, et al. Initial diagnostic management of pediatric bone tumors. J Pediatr Surg. 2016;51(6):981–5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Khoo MMY, Saifuddin A. The role of MRI in image-guided needle biopsy of focal bone and soft tissue neoplasms. Skelet Radiol. 2013;42(7):905–15.

    Article  CAS  Google Scholar 

  69. Ahrar JU, Stafford RJ, Alzubaidi S, Ahrar K. Magnetic resonance imaging-guided biopsy in the musculoskeletal system using a cylindrical 1.5-T magnetic resonance imaging unit. Top Magn Reson Imaging. 2011;22(4):189–96.

    Article  PubMed  Google Scholar 

  70. Wu H-TH, Chang C-Y, Chang H, Yen C-C, Cheng H, Chen PC-S, et al. Magnetic resonance imaging guided biopsy of musculoskeletal lesions. J Chin Med Assoc. 2012;75(4):160–6.

    Article  PubMed  Google Scholar 

  71. Jeys LM, Thorne CJ, Parry M, Gaston CLL, Sumathi VP, Grimer JR. A novel system for the surgical staging of primary high-grade osteosarcoma: The Birmingham Classification. Clin Orthop Relat Res. 2017;475(3):842–50.

    Article  PubMed  Google Scholar 

  72. Cates JMM. Simple staging system for osteosarcoma performs equivalently to the AJCC and MSTS systems: OSTEOSARCOMA STAGING. J Orthop Res [Internet]. 2018 [cited 2018 Jun 27]; Available from: http://doi.wiley.com/10.1002/jor.24032

  73. Jeon D-G, Cho WH, Song WS, Kong C-B, Cho SH, Lee JW, et al. Correlation between fluid–fluid levels on initial MRI and the response to chemotherapy in stage IIB osteosarcoma. Ann Surg Oncol. 2014;21(6):1956–62.

    Article  PubMed  Google Scholar 

  74. Jeon D-G, Song WS, Cho WH, Kong C-B, Cho SH. Proximal tumor location and fluid-fluid levels on MRI predict resistance to chemotherapy in stage IIB osteosarcoma. Clin Orthop Relat Res. 2014;472(6):1911–20.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim MS, Lee S-Y, Cho WH, Song WS, Koh J-S, Lee JA, et al. Growth patterns of osteosarcoma predict patient survival. Arch Orthop Trauma Surg. 2009;129(9):1189–96.

    Article  PubMed  Google Scholar 

  76. Lee JA, Kim MS, Kim DH, Lim JS, Yoo JY, Koh JS, et al. Relative tumor burden predicts metastasis-free survival in pediatric osteosarcoma. Pediatr Blood Cancer. 2008;50(2):195–200.

    Article  PubMed  Google Scholar 

  77. Kim SH, Shin K-H, Park EH, Cho YJ, Park B-K, Suh J-S, et al. A new relative tumor sizing method in epi-metaphyseal osteosarcoma. BMC Cancer. 2015 [cited 2018 Jun 27];15(1). Available from: http://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1129-9

  78. Holscher HC, Bloem JL, Nooy MA, Taminiau AH, Eulderink F, Hermans J. The value of MR imaging in monitoring the effect of chemotherapy on bone sarcomas. AJR Am J Roentgenol. 1990;154(4):763–9.

    Article  CAS  PubMed  Google Scholar 

  79. Holscher HC, Bloem JL, Vanel D, Hermans J, Nooy MA, Taminiau AH, et al. Osteosarcoma: chemotherapy-induced changes at MR imaging. Radiology. 1992;182(3):839–44.

    Article  CAS  PubMed  Google Scholar 

  80. Holscher HC, Bloem JL, van der Woude HJ, Hermans J, Nooy MA, Taminiau AH, et al. Can MRI predict the histopathological response in patients with osteosarcoma after the first cycle of chemotherapy? Clin Radiol. 1995;50(6):384–90.

    Article  CAS  PubMed  Google Scholar 

  81. Shin KH, Moon SH, Suh JS, Yang WI. Tumor volume change as a predictor of chemotherapeutic response in osteosarcoma. Clin Orthop. 2000;376:200–8.

    Article  Google Scholar 

  82. Amit P, Malhotra A, Kumar R, Kumar L, Patro D, Elangovan S. Evaluation of static and dynamic MRI for assessing response of bone sarcomas to preoperative chemotherapy: Correlation with histological necrosis. Indian J Radiol Imaging. 2015;25(3):269.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Laux CJ, Berzaczy G, Weber M, Lang S, Dominkus M, Windhager R, et al. Tumour response of osteosarcoma to neoadjuvant chemotherapy evaluated by magnetic resonance imaging as prognostic factor for outcome. Int Orthop. 2015;39(1):97–104.

    Article  PubMed  Google Scholar 

  84. Hanna SL, Parham DM, Fairclough DL, Meyer WH, Le AH, Fletcher BD. Assessment of osteosarcoma response to preoperative chemotherapy using dynamic FLASH gadolinium-DTPA-enhanced magnetic resonance mapping. Investig Radiol. 1992;27(5):367–73.

    Article  CAS  Google Scholar 

  85. Guo J, Reddick WE, Glass JO, Ji Q, Billups CA, Wu J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma: DCE-MRI prognostic in osteosarcoma. Cancer. 2012;118(15):3776–85.

    Article  PubMed  Google Scholar 

  86. Bonnerot V, Charpentier A, Frouin F, Kalifa C, Vanel D, Di Paola R. Factor analysis of dynamic magnetic resonance imaging in predicting the response of osteosarcoma to chemotherapy. Investig Radiol. 1992;27(10):847–55.

    Article  CAS  Google Scholar 

  87. Wakabayashi H, Saito J, Taki J, Hashimoto N, Tsuchiya H, Gabata T, et al. Triple-phase contrast-enhanced MRI for the prediction of preoperative chemotherapeutic effect in patients with osteosarcoma: comparison with 99mTc-MIBI scintigraphy. Skelet Radiol. 2016;45(1):87–95.

    Article  Google Scholar 

  88. Kubo T, Furuta T, Johan MP, Adachi N, Ochi M. Percent slope analysis of dynamic magnetic resonance imaging for assessment of chemotherapy response of osteosarcoma or Ewing sarcoma: systematic review and meta-analysis. Skelet Radiol. 2016;45(9):1235–42.

    Article  Google Scholar 

  89. Subhawong TK, Jacobs MA, Fayad LM. Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. Am J Roentgenol. 2014;203(3):560–72.

    Article  Google Scholar 

  90. Uhl M, Saueressig U, Koehler G, Kontny U, Niemeyer C, Reichardt W, et al. Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol. 2006;36(12):1306–11.

    Article  PubMed  Google Scholar 

  91. Uhl M, Saueressig U, van Buiren M, Kontny U, Niemeyer C, Köhler G, et al. Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Investig Radiol. 2006;41(8):618–23.

    Article  CAS  Google Scholar 

  92. Oka K, Yakushiji T, Sato H, Hirai T, Yamashita Y, Mizuta H. The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent diffusion coefficient. Skelet Radiol. 2010;39(2):141–6.

    Article  Google Scholar 

  93. Wang C-S, Du L-J, Si M-J, Yin Q-H, Chen L, Shu M, et al. Noninvasive assessment of response to neoadjuvant chemotherapy in osteosarcoma of long bones with diffusion-weighted imaging: an initial in vivo study. Loeb D, editor. PLoS One. 2013;8(8):e72679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Byun BH, Kong C-B, Lim I, Choi CW, Song WS, Cho WH, et al. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J Nucl Med. 2013;54(7):1053–9.

    Article  CAS  PubMed  Google Scholar 

  95. Wang J, Sun M, Liu D, Hu X, Pui MH, Meng Q, et al. Correlation between apparent diffusion coefficient and histopathology subtypes of osteosarcoma after neoadjuvant chemotherapy. Acta Radiol. 2017;58(8):971–6.

    Article  PubMed  Google Scholar 

  96. Baunin C, Schmidt G, Baumstarck K, Bouvier C, Gentet JC, Aschero A, et al. Value of diffusion-weighted images in differentiating mid-course responders to chemotherapy for osteosarcoma compared to the histological response: preliminary results. Skelet Radiol. 2012;41(9):1141–9.

    Article  CAS  Google Scholar 

  97. Kubo T, Furuta T, Johan MP, Ochi M, Adachi N. Value of diffusion-weighted imaging for evaluating chemotherapy response in osteosarcoma: a meta-analysis. Mol Clin Oncol. 2017;7(1):88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. deSouza NM, Winfield JM, Waterton JC, Weller A, Papoutsaki M-V, Doran SJ, et al. Implementing diffusion-weighted MRI for body imaging in prospective multicentre trials: current considerations and future perspectives. Eur Radiol. 2018;28(3):1118–31.

    Article  CAS  PubMed  Google Scholar 

  99. Carrle D, Bielack SS. Current strategies of chemotherapy in osteosarcoma. Int Orthop. 2006;30(6):445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Marina NM, Smeland S, Bielack SS, Bernstein M, Jovic G, Krailo MD, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–408.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ban Sharif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saifuddin, A., Sharif, B., Gerrand, C. et al. The current status of MRI in the pre-operative assessment of intramedullary conventional appendicular osteosarcoma. Skeletal Radiol 48, 503–516 (2019). https://doi.org/10.1007/s00256-018-3079-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-018-3079-1

Keywords

Navigation