Skip to main content

Advertisement

Log in

Tracking cellular stress with labeled FMAU reflects changes in mitochondrial TK2

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Fluoropyrimidines like 1-(2′-deoxy-2′-fluoro-β-d-arabinofuranosyl)-thymine (FMAU) and 3′-deoxy-3′-fluorothymidine (FLT) accumulate in tumors and are being used as positron emission tomography tumor-imaging tracers. Proliferating tissues with high thymidine kinase 1 (TK1) activity retain FLT; however, the mechanism of selective accumulation of FMAU in tumors and certain other tissues requires further study.

Methods

Retention of [3H]FLT and [3H]FMAU was measured in prostate cancer cell lines PC3, LNCaP, DU145, and the breast cancer cell line MD-MBA-231, and the tracer metabolites were analyzed by high-performance liquid chromatography (HPLC). FMAU retention, thymidine kinase 2 (TK2) activity, and mitochondrial mass were determined in cells stressed by depleted cell culture medium or by treating with oxidative, reductive, and energy stress, or specific adenosine monophosphate-activated protein kinase activator, or eIF2 inhibitor. TK1 and TK2 activities and mitochondrial mass were determined by FLT phosphorylation, 1-β-d-arabinofuranosylthymine (Ara-T) phosphorylation, and flow cytometry, respectively.

Results

FMAU retention in rapidly proliferating cancer cell lines was five to ten times lower than FLT after 10 min incubation. HPLC analysis of the cellular extracts showed that phosphorylated tracers are the main retained metabolites. Nutritional stress decreased TK1 activity and FLT retention but increased retained FMAU. TK2 inhibition decreased FMAU retention and phosphorylation with negligible effects on FLT. Oxidative, reductive, or energy stress increased FMAU retention and correlated with mitochondrial mass (r 2 = 0.88, p = 0.006). FMAU phosphorylation correlated with increased TK2 activity (r 2 = 0.87, p = 0.0002).

Conclusion

FMAU is preferably phosphorylated by TK2 and can track TK2 activity and mitochondrial mass in cellular stress. FMAU may provide an early marker of treatment effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7.

    PubMed  CAS  Google Scholar 

  2. Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol. 2002;29:281–7.

    Article  PubMed  Google Scholar 

  3. Mankoff DA, Shields AF, Krohn KA. PET imaging of cellular proliferation. Radiol Clin North Am. 2005;43:153–67.

    Article  PubMed  Google Scholar 

  4. Munch-Petersen B, Cloos L, Tyrsted G, Eriksson S. Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J Biol Chem. 1991;266:9032–8.

    PubMed  CAS  Google Scholar 

  5. Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol. 2004;31:829–37.

    Article  PubMed  CAS  Google Scholar 

  6. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4:1334–6.

    Article  PubMed  CAS  Google Scholar 

  7. Sun H, Sloan A, Mangner TJ, Vaishampayan U, Muzik O, Collins JM, et al. Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur J Nucl Med Mol Imaging. 2005;32:15–22.

    Article  PubMed  CAS  Google Scholar 

  8. Bading JR, Shahinian AH, Bathija P, Conti PS. Pharmacokinetics of the thymidine analog 2′-fluoro-5-[(14)C]-methyl-1-beta-d-arabinofuranosyluracil ([(14)C]FMAU) in rat prostate tumor cells. Nucl Med Biol. 2000;27:361–8.

    Article  PubMed  CAS  Google Scholar 

  9. Cheng YC, Dutschman G, Fox JJ, Watanabe KA, Machida H. Differential activity of potential antiviral nucleoside analogs on herpes simplex virus-induced and human cellular thymidine kinases. Antimicrob Agents Chemother. 1981;20:420–3.

    PubMed  CAS  Google Scholar 

  10. Wang J, Eriksson S. Phosphorylation of the anti-hepatitis B nucleoside analog 1-(2′-deoxy-2′-fluoro-1-beta-d-arabinofuranosyl)-5-iodouracil (FIAU) by human cytosolic and mitochondrial thymidine kinase and implications for cytotoxicity. Antimicrob Agents Chemother. 1996;40:1555–7.

    PubMed  CAS  Google Scholar 

  11. Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med. 2003;44:2027–32.

    PubMed  CAS  Google Scholar 

  12. Franzolin E, Rampazzo C, Perez-Perez MJ, Hernandez AI, Balzarini J, Bianchi V. Bromovinyl-deoxyuridine: A selective substrate for mitochondrial thymidine kinase in cell extracts. Biochem Biophys Res Commun. 2006;344:30–6.

    Article  PubMed  CAS  Google Scholar 

  13. Balzarini J, Hernandez AI, Roche P, Esnouf R, Karlsson A, Camarasa MJ, et al. Non-nucleoside inhibitors of mitochondrial thymidine kinase (TK-2) differentially inhibit the closely related herpes simplex virus type 1 TK and Drosophila melanogaster multifunctional deoxynucleoside kinase. Mol Pharmacol. 2003;63:263–70.

    Article  PubMed  CAS  Google Scholar 

  14. Johansson M, van Rompay AR, Degreve B, Balzarini J, Karlsson A. Cloning and characterization of the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster. J Biol Chem. 1999;274:23814–9.

    Article  PubMed  CAS  Google Scholar 

  15. Lee CF, Liu CY, Hsieh RH, Wei YH. Oxidative stress-induced depolymerization of microtubules and alteration of mitochondrial mass in human cells. Ann N Y Acad Sci. 2005;1042:246–54.

    Article  PubMed  CAS  Google Scholar 

  16. Kluza J, Marchetti P, Gallego MA, Lancel S, Fournier C, Loyens A, et al. Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene. 2004;23:7018–30.

    Article  PubMed  CAS  Google Scholar 

  17. Lee HC, Yin PH, Lu CY, Chi CW, Wei YH. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J. 2000;348(Pt 2):425–32.

    Article  PubMed  CAS  Google Scholar 

  18. Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB, Hockenbery DM. Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol. 1997;138:449–69.

    Article  PubMed  CAS  Google Scholar 

  19. Reipert S, Berry J, Hughes MF, Hickman JA, Allen TD. Changes of mitochondrial mass in the hemopoietic stem cell line FDCP-mix after treatment with etoposide: a correlative study by multiparameter flow cytometry and confocal and electron microscopy. Exp Cell Res. 1995;221:281–8.

    Article  PubMed  CAS  Google Scholar 

  20. Gray NM, Marr CL, Penn CR, Cameron JM, Bethell RC. The intracellular phosphorylation of (-)-2′-deoxy-3′-thiacytidine (3TC) and the incorporation of 3TC 5′-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase gamma. Biochem Pharmacol. 1995;50:1043–51.

    Article  PubMed  CAS  Google Scholar 

  21. Wintersberger E, Rotheneder H, Grabner M, Beck G, Seiser C. Regulation of thymidine kinase during growth, cell cycle and differentiation. Adv Enzyme Regul. 1992;32:241–54.

    Article  PubMed  CAS  Google Scholar 

  22. Hannigan BM, Barnett YA, Armstrong DB, McKelvey-Martin VJ, McKenna PG. Thymidine kinases: the enzymes and their clinical usefulness. Cancer Biother. 1993;8:189–97.

    PubMed  CAS  Google Scholar 

  23. Wang N, He Q, Skog S, Eriksson S, Tribukait B. Investigation on cell proliferation with a new antibody against thymidine kinase 1. Anal Cell Pathol. 2001;23:11–9.

    PubMed  Google Scholar 

  24. Koch J, Storstad EL. Incorporation of[3H]thymidine into nuclear and mitochondrial DNA in synchronized mammalian cells. Eur J Biochem. 1967;3:1–6.

    Article  PubMed  CAS  Google Scholar 

  25. Berk AJ, Meyer BJ, Clayton DA. Mitochondrial-specific thymidine kinase. Arch Biochem Biophys. 1973;154:563–5.

    Article  PubMed  CAS  Google Scholar 

  26. Gentry GA. Viral thymidine kinases and their relatives. Pharmacol Ther. 1992;54:319–55.

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto Y, Nishiyama Y, Ishikawa S, Nakano J, Chang SS, Bandoh S, et al. Correlation of (18)F-FLT and (18)F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34:1610–6.

    Article  PubMed  CAS  Google Scholar 

  28. Bading JR, Shahinian AH, Vail A, Bathija P, Koszalka GW, Koda RT, et al. Pharmacokinetics of the thymidine analog 2′-fluoro-5-methyl-1-beta-d-arabinofuranosyluracil (FMAU) in tumor-bearing rats. Nucl Med Biol. 2004;31:407–18.

    Article  PubMed  CAS  Google Scholar 

  29. Shields AF, Briston DA, Chandupatla S, Douglas KA, Lawhorn-Crews J, Collins JM, et al. A simplified analysis of [18F]3′-deoxy-3′-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging. 2005;32:1269–75.

    PubMed  CAS  Google Scholar 

  30. Tehrani OS, Muzik O, Heilbrun LK, Douglas KA, Lawhorn-Crews JM, Sun H, et al. Tumor imaging using 1-(2′-deoxy-2′-18F-fluoro-{beta}-d-arabinofuranosyl)thymine and PET. J Nucl Med. 2007;48:1436–41.

    Article  PubMed  CAS  Google Scholar 

  31. Arner ES, Spasokoukotskaja T, Eriksson S. Selective assays for thymidine kinase 1 and 2 and deoxycytidine kinase and their activities in extracts from human cells and tissues. Biochem Biophys Res Commun. 1992;188:712–8.

    Article  PubMed  CAS  Google Scholar 

  32. Sun H, Mangner TJ, Collins JM, Muzik O, Douglas K, Shields AF. Imaging DNA synthesis in vivo with 18F-FMAU and PET. J Nucl Med. 2005;46:292–6. 46/2/292 [pii] 46/2/292 [pii].

    PubMed  CAS  Google Scholar 

  33. Wang H, Oliver P, Nan L, Wang S, Wang Z, Rhie JK, et al. Radiolabeled 2′-fluorodeoxyuracil-beta-d-arabinofuranoside (FAU) and 2′-fluoro-5-methyldeoxyuracil-beta-d-arabinofuranoside (FMAU) as tumor-imaging agents in mice. Cancer Chemother Pharmacol. 2002;49:419–24.

    Article  PubMed  CAS  Google Scholar 

  34. Polekhina G, Gupta A, Michell BJ, van Denderen B, Murthy S, Feil SC, et al. AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol. 2003;13:867–71.

    Article  PubMed  CAS  Google Scholar 

  35. Hardie DG, Carling D. The AMP-activated protein kinase–fuel gauge of the mammalian cell. Eur J Biochem. 1997;246:259–73.

    Article  PubMed  CAS  Google Scholar 

  36. Winder WW, Thomson DM. Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys. 2007;47:332–47.

    Article  PubMed  CAS  Google Scholar 

  37. van den Beucken T, Koritzinsky M, Wouters BG. Translational control of gene expression during hypoxia. Cancer Biol Ther. 2006;5:749–55.

    PubMed  Google Scholar 

  38. Araki E, Oyadomari S, Mori M. Endoplasmic reticulum stress and diabetes mellitus. Intern Med. 2003;42:7–14.

    Article  PubMed  Google Scholar 

  39. Harding HP, Ron D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes. 2002;51(Suppl 3):S455–61.

    Article  PubMed  CAS  Google Scholar 

  40. Kadara H, Lacroix L, Lotan D, Lotan R. Induction of endoplasmic reticulum stress by the pro-apoptotic retinoid N-(4-hydroxyphenyl)retinamide via a reactive oxygen species-dependent mechanism in human head and neck cancer cells. Cancer Biol Ther. 2007;6(5):705–11.

    Article  PubMed  CAS  Google Scholar 

  41. England K, Driscoll CO, Cotter TG. ROS and protein oxidation in early stages of cytotoxic drug induced apoptosis. Free Radic Res. 2006;40:1124–37.

    Article  PubMed  CAS  Google Scholar 

  42. Borutaite V, Budriunaite A, Brown GC. Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim Biophys Acta. 2000;1459:405–12. S0005-2728(00)00178-X [pii] S0005-2728(00)00178-X [pii].

    Article  PubMed  CAS  Google Scholar 

  43. Lee GH, Kim HK, Chae SW, Kim DS, Ha KC, Cuddy M, et al. Bax inhibitor-1 regulates endoplasmic reticulum stress-associated reactive oxygen species and heme oxygenase-1 expression. J Biol Chem. 2007;282:21618–28.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang Y, Soboloff J, Zhu Z, Berger SA. Inhibition of Ca2 + influx is required for mitochondrial reactive oxygen species-induced endoplasmic reticulum Ca2 + depletion and cell death in leukemia cells. Mol Pharmacol. 2006;70:1424–34. mol.106.024323 [pii] 10.1124/mol.106.024323 mol.106.024323 [pii] 10.1124/mol.106.024323.

    Article  PubMed  CAS  Google Scholar 

  45. Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Nishi T, et al. Oxidative damage to the endoplasmic reticulum is implicated in ischemic neuronal cell death. J Cereb Blood Flow Metab. 2003;23:1117–28.

    Article  PubMed  CAS  Google Scholar 

  46. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene. 2003;22:8608–18.

    Article  PubMed  CAS  Google Scholar 

  47. Masud A, Mohapatra A, Lakhani SA, Ferrandino A, Hakem R, Flavell RA. Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J Biol Chem. 2007;282:14132–9.

    Article  PubMed  CAS  Google Scholar 

  48. Chin TY, Lin HC, Kuo JP, Chueh SH. Dual effect of thapsigargin on cell death in porcine aortic smooth muscle cells. Am J Physiol Cell Physiol. 2007;292:C383–95.

    Article  PubMed  CAS  Google Scholar 

  49. Fels DR, Koumenis C. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther. 2006;5:723–8.

    Article  PubMed  CAS  Google Scholar 

  50. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. Embo J. 2005;24:3470–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to express their deep appreciation to Mr. Eric Van Buren at Karmanos Flow Cytometry Core and Dr. Kristin L. Piwowar, who helped us with their valuable skills. This work was partially supported by funding from the National Cancer Institute CA 39566, CA 22453 and the US Department of Defense Award W81XWH-04-1-0140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony F. Shields.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tehrani, O.S., Douglas, K.A., Lawhorn-Crews, J.M. et al. Tracking cellular stress with labeled FMAU reflects changes in mitochondrial TK2. Eur J Nucl Med Mol Imaging 35, 1480–1488 (2008). https://doi.org/10.1007/s00259-008-0738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0738-9

Keywords

Navigation