Skip to main content

Advertisement

Log in

Non-invasive estimation of hepatic blood perfusion from H2 15O PET images using tissue-derived arterial and portal input functions

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The liver is perfused through the portal vein and the hepatic artery. When its perfusion is assessed using positron emission tomography (PET) and 15O-labeled water (H2 15O), calculations require a dual blood input function (DIF), i.e., arterial and portal blood activity curves. The former can be generally obtained invasively, but blood withdrawal from the portal vein is not feasible in humans. The aim of the present study was to develop a new technique to estimate quantitative liver perfusion from H2 15O PET images with a completely non-invasive approach.

Methods

We studied normal pigs (n = 14) in which arterial and portal blood tracer concentrations and Doppler ultrasonography flow rates were determined invasively to serve as reference measurements. Our technique consisted of using model DIF to create tissue model function and the latter method to simultaneously fit multiple liver time–activity curves from images. The parameters obtained reproduced the DIF. Simulation studies were performed to examine the magnitude of potential biases in the flow values and to optimize the extraction of multiple tissue curves from the image.

Results

The simulation showed that the error associated with assumed parameters was <10%, and the optimal number of tissue curves was between 10 and 20. The estimated DIFs were well reproduced against the measured ones. In addition, the calculated liver perfusion values were not different between the methods and showed a tight correlation (r = 0.90).

Conclusion

In conclusion, our results demonstrate that DIF can be estimated directly from tissue curves obtained through H2 15O PET imaging. This suggests the possibility to enable completely non-invasive technique to assess liver perfusion in patho-physiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med. 1997;24:258–65.

    PubMed  CAS  Google Scholar 

  2. Becker GA, Muller-Schauenburg W, Spilker ME, Machulla HJ, Piert M. A priori identifiability of a one-compartment model with two input functions for liver blood flow measurements. Phys Med Biol. 2005;50:1393–404.

    Article  PubMed  Google Scholar 

  3. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    PubMed  CAS  Google Scholar 

  4. Blomley MJ, Coulden R, Dawson P, et al. Liver perfusion studied with ultrafast CT. J Comput Assist Tomogr. 1995;19:424–33.

    Article  PubMed  CAS  Google Scholar 

  5. Carson RE. Parameter estimation in positron emission tomography. In: Phelps ME, Mazziotta JC, Schelbert HR, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York, NY: Raven; 1986. p. 347–90.

    Google Scholar 

  6. Johnson DJ, Muhlbacher F, Wilmore DW. Measurement of hepatic blood flow. J Surg Res. 1985;39:470–81.

    Article  PubMed  CAS  Google Scholar 

  7. Edward VR, Di Bella EV, Clackdoyle R, Gullberg GT. Blind estimation of compartmental model parameters. Phys Med Biol. 1999;44:765–80.

    Article  Google Scholar 

  8. Eriksson L, Holte S, Bohm Chr, Kesselberg M, Hovander B. Automated blood sampling system for positron emission tomography. IEEE Trans Nucl Sci. 1988;35:703–7.

    Article  Google Scholar 

  9. Eriksson L, Kanno I. Blood sampling devices and measurements. Med Prog Technol. 1991;17:249–57.

    PubMed  CAS  Google Scholar 

  10. Henderson JM, Gilmore GT, Mackay GJ, Galloway JR, Dodson TF, Kutner MH. Hemodynamics during liver transplantation: the interactions between cardiac output and portal venous and hepatic arterial flows. Hepatology. 1992;16:715–8.

    Article  PubMed  CAS  Google Scholar 

  11. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986;6:536–45.

    PubMed  CAS  Google Scholar 

  12. Iida H, Higano S, Tomura N, Shishido F, Kanno I, Miura S, et al. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O] water and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1988;8:285–8.

    PubMed  CAS  Google Scholar 

  13. Iozzo P, Gastaldelli A, Järvisalo MJ, Kiss J, Borra R, Buzzigoli E, et al. 18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: a validation study. J Nucl Med. 2006;47:1016–22.

    PubMed  CAS  Google Scholar 

  14. Iozzo P, Järvisalo MJ, Kiss J, Borra R, Naum GA, Viljanen A, et al. Quantification of liver glucose metabolism by positron emission tomography: validation study in pigs. Gastroenterology. 2007;132:531–42.

    Article  PubMed  CAS  Google Scholar 

  15. Juillard L, Janier M, Fouque D, et al. Renal blood flow measurement by positron emission tomography using 15O-labeled water. Kidney Int. 2000;57:2511–8.

    Article  PubMed  CAS  Google Scholar 

  16. Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, et al. A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab. 1987;7:143–53.

    PubMed  CAS  Google Scholar 

  17. Kudomi N, Choi E, Watabe H, Kim KM, Shidahara M, Ogawa M, et al. Development of a GSO detector assembly for a continuous blood sampling system. IEEE TNS. 2003;50:70–3.

    CAS  Google Scholar 

  18. Kudomi N, Watabe H, Hayashi T, Iida H. Non-invasive estimation of arterial input function for water and oxygen from PET dynamic images. J Nucl Med. 2006;47(Supplement 1):361.

    Google Scholar 

  19. Leen E, Goldberg JA, Anderson JR, et al. Hepatic perfusion changes in patients with liver metastases: comparison with those patients with cirrhosis. Gut. 1993;34:554–7.

    Article  PubMed  CAS  Google Scholar 

  20. Lindstedt, Schaeffer. Use of allometry in predicting anatomical and physiological parameters of mammals. Laboratory Anim. 2002;36:1–19.

    Article  CAS  Google Scholar 

  21. Martin-Comin J, Mora J, Figueras J, et al. Calculation of portal contribution to hepatic blood flow with 99m-Tc-microcolloids. A noninvasive method to diagnose liver graft rejection. J Nucl Med. 1988;29:1776–80.

    PubMed  CAS  Google Scholar 

  22. Materne R, Van Beers BE, Smith AM, Leconte I, Jamart J, Dehoux JP, et al. Non-invasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model. Clin Sci (Lond). 2000;99:517–25.

    Article  CAS  Google Scholar 

  23. Munk OL, Bass L, Roelsgaard K, Bender D, Hansen SB, Keiding S. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. Nucl Med. 2001;42:795–801.

    CAS  Google Scholar 

  24. Naganawa M, Kimura Y, Nariai T, et al. Omission of serial arterial blood sampling in neuroreceptor imaging with independent component analysis. NeuroImage. 2005a;26:885–90.

    Article  PubMed  Google Scholar 

  25. Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time–activity curve from dynamic brain pet images based on independent component analysis. IEEE Trans on Bio-Med Eng. 2005b;52:201–10.

    Article  Google Scholar 

  26. Ruotsalainen U, Raitakari M, Nuutila P, Oikonen V, Sipilä H, Teräs M, et al. Quantitative blood flow measurement of skeletal muscle using oxygen-15-water and PET. J Nucl Med. 1997;38:314–9.

    PubMed  CAS  Google Scholar 

  27. Sanabria-Bohorquez SM, Maes A, Dupont P, Bormans G, de Groot T, Coimbra A, et al. Image-derived input function for [11C]flumazenil kinetic analysis in human brain. Mol Img Biol. 2003;5:72–8.

    Article  Google Scholar 

  28. Taniguchi H, Oguro A, Takeuchi K, Miyata K, Takahashi T, Inaba T, et al. Difference in regional hepatic blood flow in liver segments—non-invasive measurement of regional hepatic arterial and portal blood flow in human by positron emission tomography with H2(15)O. Ann Nucl Med. 1993;7:141–5.

    Article  PubMed  CAS  Google Scholar 

  29. Taniguchi H, Oguro A, Koyama H, Masuyama M, Takahashi T. Analysis of models for quantification of arterial and portal blood flow in the human liver using PET. J Comput Assist Tomogr. 1996a;20:135–44.

    Article  PubMed  CAS  Google Scholar 

  30. Taniguchi H, Koyama H, Masuyama M, Takada A, Mugitani T, Tanaka H, et al. Angiotensin-II-induced hypertension chemotherapy: evaluation of hepatic blood flow with oxygen-15 PET. J Nucl Med. 1996b;37:1522–3.

    PubMed  CAS  Google Scholar 

  31. Taniguchi H, Yamaguchi A, Kunishima S, Koh T, Masuyama M, Koyama H, et al. Using the spleen for time-delay correction of the input function in measuring hepatic blood flow with oxygen-15 water by dynamic PET. Ann Nucl Med. 1999;13:215–21.

    PubMed  CAS  Google Scholar 

  32. Van der Weerdt A, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input functions for determination of MRGlu in cardiac 18F-FDG PET scans. J Nucl Med. 2001;42:1622–9.

    PubMed  Google Scholar 

  33. Votaw JR, Shulman SD. Performance evaluation of the pico-count flow-through detector for use in cerebral blood flow PET studies. J Nucl Med. 1998;39:509–15.

    PubMed  CAS  Google Scholar 

  34. Watabe H, Channing MA, Riddell C, Jousse F, Libutti SK, Carrasquillo JA, et al. Noninvasive estimation of the aorta input function for measurement of tumor blood flow with. IEEE Trans Med Imaging. 2001;20:164–74.

    Article  PubMed  CAS  Google Scholar 

  35. Ziegler SI, Haberkorn U, Byrne H, Tong C, Kaja S, Richolt JA, et al. Price P Measurement of liver blood flow using oxygen-15 labelled water and dynamic positron emission tomography: limitations of model description. Eur J Nucl Med. 1996;23:169–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the technical staff of the Turku PET Centre for the efforts and skills dedicated to this project. This work is part of the project Hepatic and Adipose Tissue and Functions in the Metabolic Syndrome (HEPADIP, see http://www.hepadip.org/), which is supported by the European Commission as an Integrated Project under the 6th Framework Programme (contract LSHMCT-2005-018734). The study was further supported by grants from the Academy of Finland (206359 to P.N.), Finnish Diabetes Foundation (P.I.), EFSD/Eli-Lilly (P.I.), Sigrid Juselius Foundation (N.K. and P.I.), and Novo Nordisk Foundation (P.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kudomi.

Appendix

Appendix

A model function for AIF was created by assuming a two-compartment model in which the tracer is administered in a rectangular form and diffuses bi-directionally between arterial and interstitial space in whole body peripheral tissue compartments. Differential equations for the model function (C A(t)) can be expressed as

$$\frac{{\operatorname{d} C_{\text{A}} \left( t \right) }}{{\operatorname{d} t}} = {\text{ }}\frac{{\operatorname{d} F }}{{\operatorname{d} t}} - K_{\text{e}} C_{\text{A}} \left( t \right) + K_{\text{i}} C_{{\text{WB}}} \left( t \right)$$
(9)
$$\frac{{\operatorname{d} C_{{\text{WB}}} \left( t \right)}}{{\operatorname{d} t}} = K_{\text{e}} C_{\text{A}} \left( t \right) - K_{\text{i}} C_{{\text{WB}}} \left( t \right)$$
(10)
$$\begin{array}{*{20}c} {\frac{{\operatorname{d} F }}{{\operatorname{d} t}} = A}{{\left( {t_{1} \leqslant t \leqslant t_{2} } \right)}} \\ 0{{\left( {{\text{elsewhere}}} \right)}} \\ \end{array} $$
(11)

where t 1 and t 2 assumes the appearance time of administered tracer, and t 2 − t 1 represents the administration duration; A corresponds to the given amount of tracer. The equation F (Eq. 11) represents the bolus administration of tracer in the rectangular form with duration t 2 − t 1. C WB(t) is the expected tracer concentration in interstitial spaces in whole body peripheral tissues; K e and K i are bidirectional tracer diffusion rates between blood and peripheral tissue compartments, respectively. Solving Eq. 10 for C WB gives

$$C_{{\text{WB}}} \left( t \right) = K_{\text{e}} e^{ - K_{\text{i}} \cdot t} \int_0^t {C_{\text{A}} \left( \tau \right)e^{K_{\text{i}} \cdot \tau } \operatorname{d} \tau } {\text{.}}$$
(12)

Sum of Eqs. 9 and 10 is

$$\frac{{\operatorname{d} \left( {C_{\text{A}} \left( t \right) + C_{{\text{WB}}} \left( t \right)} \right) }}{{\operatorname{d} t}} = {\text{ }}\frac{{\operatorname{d} F }}{{\operatorname{d} t}}{\text{.}}$$
(13)

Thus,

$$\begin{aligned} & C_{{\text{A}}} {\left( t \right)} + C_{{{\text{WB}}}} {\left( t \right)} = {\text{ }}F \\ & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{array}{*{20}c} { = 0}{{\left( {t < t_{1} } \right)}} \\ { = A{\left( {t - t_{1} } \right)}}{{\left( {t_{1} \leqslant t \leqslant t_{2} } \right)}} \\ { = A{\left( {t_{2} - t_{1} } \right)}}{{\left( {t > t_{2} } \right)}} \\ \end{array} \\ \end{aligned}$$
(14)

Substitution of C WB from Eq. 12 into 14 after multiplying \(e^{K_{\text{i}} \cdot t} \) gives

$$e^{{K_{{\text{i}}} \cdot t}} C_{{\text{A}}} {\left( t \right)} + K_{{\text{e}}} {\int_0^t {C_{{\text{A}}} {\left( \tau \right)}e^{{K_{{\text{i}}} \cdot \tau }} \operatorname{d} \tau } } = e^{{K_{{\text{i}}} \cdot t}} F$$
(15)

Differentiation with respect to t after arranging gives

$$\frac{{\operatorname{d} C_{{\text{A}}} {\left( t \right)}}}{{\operatorname{d} t}} = \alpha F + \frac{1}{{K_{{\text{e}}} }}\frac{{\operatorname{d} F }}{{\operatorname{d} t}} - K_{{\text{e}}} {\left( {1 + \alpha } \right)}C_{{\text{A}}} {\left( t \right)}$$
(16)

where α = K i/K e . Thus,

$$C_{{\text{A}}} {\left( t \right)} = K_{{\text{e}}} e^{{ - K_{{\text{e}}} \cdot (1 + \alpha ) \cdot t}} {\int_0^t {{\left( {\alpha F + \frac{1}{{K_{{\text{e}}} }}\frac{{\operatorname{d} F}}{{\operatorname{d} t}}} \right)}e^{{K_{{\text{e}}} \cdot {\left( {1 + \alpha } \right)} \cdot \tau }} \operatorname{d} \tau } }$$
(17)

Solving Eq. 17, we obtain

$$\begin{array}{*{20}c} {C_{{\text{A}}} {\left( t \right)} = 0}{{\left( {t < t_{1} } \right)}} \\ { = \frac{A}{{K_{{\text{e}}} ^{2} {\left( {1 + \alpha } \right)}^{2} }}{\left( {K_{{\text{e}}} \alpha {\left( {1 + \alpha } \right)}{\left( {t - t_{1} } \right)} + 1 - e^{{K_{{\text{e}}} \cdot {\left( {1 + \alpha } \right)} \cdot {\left( {t_{1} - t} \right)}}} } \right)}}{{\left( {t_{1} \leqslant t \leqslant t_{2} } \right)}} \\ { = \frac{A}{{K_{{\text{e}}} ^{2} {\left( {1 + \alpha } \right)}^{2} }}\left. {{\left( {K_{{\text{e}}} \alpha {\left( {1 + \alpha } \right)}{\left( {t_{2} - t_{1} } \right)} + e^{{K_{{\text{e}}} \cdot {\left( {1 + \alpha } \right)} \cdot {\left( {t_{2} - t} \right)}}} - e^{{K_{{\text{e}}} \cdot (1 + \alpha ) \cdot (t_{1} - t)}} } \right)}} \right)}{{\left( {t > t_{2} } \right)}} \\ \end{array} $$
(18)

The first term in the second equation for t 1 < t <t 2, i.e., K e α(1 + α)(t 1 − t 2), would complicate further calculations (such as tissue response and portal input); thus, this term was omitted, and the model function (Eq. 18) was modified to set the C A value as 0 at t = t 1, as continuous at t = t 2, and as non-zero value at the equilibrium, i.e., at t = ∞. Thus, the following equation was derived:

$$\begin{array}{*{20}c} {C_{{\text{A}}} {\left( t \right)} = 0.}{{\left( {t < t_{1} } \right)}} \\ { = \frac{A}{{K_{{\text{e}}} ^{2} {\left( {1 + \alpha } \right)}^{2} }}{\left( {1 - \exp {\left( {K_{{\text{e}}} {\left( {1 + \alpha } \right)}{\left( {t_{1} - t} \right)}} \right)}} \right)}}{{\left( {t_{1} \leqslant t \leqslant t_{2} } \right)}} \\ { = \frac{A}{{K_{{\text{e}}} ^{2} {\left( {1 + \alpha } \right)}^{2} }}{\left( {\exp {\left( {K_{{\text{e}}} {\left( {1 + \alpha } \right)}{\left( {t_{1} - t_{2} } \right)}} \right)} + \exp {\left( {K_{{\text{e}}} {\left( {1 + \alpha } \right)}{\left( {t_{2} - t} \right)}} \right)} - 2 \cdot \exp {\left( {K_{{\text{e}}} {\left( {1 + \alpha } \right)}{\left( {t_{1} - t} \right)}} \right)}} \right)}}{{\left( {t > t_{2} } \right)}} \\ \end{array} $$
(19)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudomi, N., Slimani, L., Järvisalo, M.J. et al. Non-invasive estimation of hepatic blood perfusion from H2 15O PET images using tissue-derived arterial and portal input functions. Eur J Nucl Med Mol Imaging 35, 1899–1911 (2008). https://doi.org/10.1007/s00259-008-0796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0796-z

Keywords

Navigation