Skip to main content

Advertisement

Log in

Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To determine the relationship between carotid intima–media thickness (IMT), coronary artery calcification (CAC), and myocardial blood flow (MBF) at rest and during vasomotor stress in type 2 diabetes mellitus (DM).

Methods

In 68 individuals, carotid IMT was measured using high-resolution vascular ultrasound, while the presence of CAC was determined with electron beam tomography (EBT). Global and regional MBF was determined in milliliters per gram per minute with 13N-ammonia and positron emission tomography (PET) at rest, during cold pressor testing (CPT), and during adenosine (ADO) stimulation.

Results

There was neither a relationship between carotid IMT and CAC (r = 0.10, p = 0.32) nor between carotid IMT and coronary circulatory function in response to CPT and during ADO (r = −0.18, p = 0.25 and r = 0.10, p = 0.54, respectively). In 33 individuals, EBT detected CAC with a mean Agatston-derived calcium score of 44 ± 18. There was a significant difference in regional MBFs between territories with and without CAC at rest and during ADO-stimulated hyperemia (0.69 ± 0.24 vs. 0.74 ± 0.23 and 1.82 ± 0.50 vs. 1.95 ± 0.51 ml/g/min; p ≤ 0.05, respectively) and also during CPT in DM but less pronounced (0.81 ± 0.24 vs. 0.83 ± 0.23 ml/g/min; p = ns). The increase in CAC was paralleled with a progressive regional decrease in resting as well as in CPT- and ADO-related MBFs (r = −0.36, p ≤ 0.014; r = −0.46, p ≤ 0.007; and r = −0.33, p ≤ 0.041, respectively).

Conclusions

The absence of any correlation between carotid IMT and coronary circulatory function in type 2 DM suggests different features and stages of early atherosclerosis in the peripheral and coronary circulation. PET-measured MBF heterogeneity at rest and during vasomotor stress may reflect downstream fluid dynamic effects of coronary artery disease (CAD)-related early structural alterations of the arterial wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADO:

adenosine

IMT:

intima–media thickness

CAC:

coronary artery calcification

CCS:

coronary artery calcium score

CPT:

cold pressor test

CVR:

coronary vascular resistance

EBT:

electron beam tomography

HDL:

high-density lipoprotein

LDL:

low-density lipoprotein

MBF:

myocardial blood flow

RPP:

rate–pressure product

PET:

positron emission tomography

References

  1. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation 2007;115:1464–80.

    Article  PubMed  Google Scholar 

  2. Reddy KG, Nair RN, Sheehan HM, Hodgson JM. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol 1994;23:833–43.

    PubMed  CAS  Google Scholar 

  3. Schindler TH, Cardenas J, Prior JO, Facta AD, Kreissl MC, Zhang XL, et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol 2006;47:1188–95.

    Article  PubMed  CAS  Google Scholar 

  4. Di Carli MF, Dorbala S, Hachamovitch R. Integrated cardiac PET-CT for the diagnosis and management of CAD. J Nucl Cardiol 2006;13:139–44.

    Article  PubMed  Google Scholar 

  5. Schindler TH, Zhang XL, Vincenti G, Mhiri L, Lerch R, Schelbert HR. Role of PET in the evaluation and understanding of coronary physiology. J Nucl Cardiol 2007;14:589–603.

    Article  PubMed  Google Scholar 

  6. Prior JO, Schindler TH, Facta AD, Hernandez-Pampaloni M, Campisi R, Dahlbom M, et al. Determinants of myocardial blood flow response to cold pressor testing and pharmacologic vasodilation in healthy humans. Eur J Nucl Med Mol Imaging 2007;34:20–7.

    Article  PubMed  Google Scholar 

  7. Graner M, Varpula M, Kahri J, Salonen RM, Nyyssönen K, Nieminen MS, et al. Association of carotid intima–media thickness with angiographic severity and extent of coronary artery disease. Am J Cardiol 2006;97:624–9.

    Article  PubMed  Google Scholar 

  8. Ogata T, Yasaka M, Yamagishi M, Seguchi O, Nagatsuka K, Minematsu K. Atherosclerosis found on carotid ultrasonography is associated with atherosclerosis on coronary intravascular ultrasonography. J Ultrasound Med 2005;24:469–74.

    PubMed  Google Scholar 

  9. Hoffmann U, Ferencik M, Cury RC, Pena AJ. Coronary CT angiography. J Nucl Med 2006;47:797–806.

    PubMed  Google Scholar 

  10. Hoffmann U, Nagurney JT, Moselewski F, Pena A, Ferencik M, Chae CU, et al. Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation 2006;114:2251–60.

    Article  PubMed  Google Scholar 

  11. Gould KL, Lipscomb K, Calvert C. Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation 1975;51:1085–94.

    PubMed  CAS  Google Scholar 

  12. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–51.

    PubMed  Google Scholar 

  13. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782–8.

    Article  PubMed  CAS  Google Scholar 

  14. Beanlands RS, Muzik O, Melon P, Sutor R, Sawada S, Muller D, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995;26:1465–75.

    Article  PubMed  CAS  Google Scholar 

  15. Gould KL, Nakagawa Y, Nakagawa K, Sdringola S, Hess MJ, Haynie M, et al. Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation 2000;101:1931–9.

    PubMed  CAS  Google Scholar 

  16. Gould KL. Assessing progression or regression of CAD: the role of perfusion imaging. J Nucl Cardiol 2005;12:625–38.

    Article  PubMed  Google Scholar 

  17. Graf S, Khorsand A, Gwechenberger M, Novotny C, Kletter K, Sochor H, et al. Typical chest pain and normal coronary angiogram: cardiac risk factor analysis versus PET for detection of microvascular disease. J Nucl Med 2007;48:175–81.

    PubMed  Google Scholar 

  18. Johnson NP, Gould KL. Clinical evaluation of a new concept: resting myocardial perfusion heterogeneity quantified by markovian analysis of PET identifies coronary microvascular dysfunction and early atherosclerosis in 1,034 subjects. J Nucl Med 2005;46:1427–37.

    PubMed  Google Scholar 

  19. Hernandez-Pampaloni M, Keng FY, Kudo T, Sayre JS, Schelbert HR. Abnormal longitudinal, base-to-apex myocardial perfusion gradient by quantitative blood flow measurements in patients with coronary risk factors. Circulation 2001;104:527–32.

    Article  PubMed  CAS  Google Scholar 

  20. Schindler TH, Facta AD, Prior JO, Campisi R, Inubushi M, Kreissl MC, et al. PET-measured heterogeneity in longitudinal myocardial blood flow in response to sympathetic and pharmacologic stress as a non-invasive probe of epicardial vasomotor dysfunction. Eur J Nucl Med Mol Imaging 2006;33:1140–9.

    Article  PubMed  Google Scholar 

  21. Schindler TH, Zhang XL, Vincenti G, Mhiri L, Nkoulou R, Just H, et al. Diagnostic value of PET-measured heterogeneity in myocardial blood flows during cold pressor testing for the identification of coronary vasomotor dysfunction. J Nucl Cardiol 2007;14:688–97.

    Article  PubMed  Google Scholar 

  22. Jarvisalo MJ, Jartti L, Nanto-Salonen K, Irjala K, Roennemaa T, Hartiala JJ, et al. Increased aortic intima–media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation 2001;104:2943–7.

    Article  PubMed  CAS  Google Scholar 

  23. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr., Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827–32.

    Article  PubMed  CAS  Google Scholar 

  24. Goldin JG, Yoon HC, Greaser LE 3rd, Heinze SB, McNitt-Gray MM, Brown MS, et al. Spiral versus electron-beam CT for coronary artery calcium scoring. Radiology 2001;221:213–21.

    Article  PubMed  CAS  Google Scholar 

  25. Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 1999;74:243–52.

    Article  PubMed  CAS  Google Scholar 

  26. Hodis HN, Mack WJ, Zheng L, Li Y, Torres M, Sevilla D, et al. Effect of peroxisome proliferator-activated receptor gamma agonist treatment on subclinical atherosclerosis in patients with insulin-requiring type 2 diabetes. Diabetes Care 2006;29:1545–53.

    Article  PubMed  CAS  Google Scholar 

  27. Zeiher AM, Drexler H. Coronary hemodynamic determinants of epicardial artery vasomotor responses during sympathetic stimulation in humans. Basic Res Cardiol 1991;86(Suppl 2):203–13.

    PubMed  Google Scholar 

  28. De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation 2001;104:2401–6.

    Article  PubMed  Google Scholar 

  29. Newman AB, Naydeck BL, Sutton-Tyrrell K, Edmundowicz D, O’Leary D, Kronmal R, et al. Relationship between coronary artery calcification and other measures of subclinical cardiovascular disease in older adults. Arterioscler Thromb Vasc Biol 2002;22:1674–9.

    Article  PubMed  CAS  Google Scholar 

  30. Juonala M, Viikari JS, Laitinen T, Marniemi J, Helenius H, Roennemaa T, et al. Interrelations between brachial endothelial function and carotid intima–media thickness in young adults: the cardiovascular risk in young Finns study. Circulation 2004;110:2918–23.

    Article  PubMed  Google Scholar 

  31. Jarvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, et al. Endothelial dysfunction and increased arterial intima–media thickness in children with type 1 diabetes. Circulation 2004;109:1750–5.

    Article  PubMed  Google Scholar 

  32. Hashimoto M, Eto M, Akishita M, Kozaki K, Ako J, Iijima K, et al. Correlation between flow-mediated vasodilatation of the brachial artery and intima–media thickness in the carotid artery in men. Arterioscler Thromb Vasc Biol 1999;19:2795–800.

    PubMed  CAS  Google Scholar 

  33. Yan RT, Anderson TJ, Charbonneau F, Title L, Verma S, Lonn E. Relationship between carotid artery intima–media thickness and brachial artery flow-mediated dilation in middle-aged healthy men. J Am Coll Cardiol 2005;45:1980–6.

    Article  PubMed  Google Scholar 

  34. Schachinger V, Zeiher AM. Quantitative assessment of coronary vasoreactivity in humans in vivo. Importance of baseline vasomotor tone in atherosclerosis. Circulation 1995;92:2087–94.

    PubMed  CAS  Google Scholar 

  35. Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 1989;14:1181–90.

    Article  PubMed  CAS  Google Scholar 

  36. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157–62.

    PubMed  CAS  Google Scholar 

  37. Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991;83:391–401.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Grant HL 33177, National Heart, Lung and Blood Institute, Bethesda, MD, USA.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich R. Schelbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schindler, T.H., Facta, A.D., Prior, J.O. et al. Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 36, 219–229 (2009). https://doi.org/10.1007/s00259-008-0885-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0885-z

Keywords

Navigation