Skip to main content

Advertisement

Log in

Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: preliminary results

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Major depressive disorder (MDD) has been related to both a dysfunctional γ-amino butyric acid (GABA) system and to hyperactivity of the hypothalamic-pituitary-adrenal axis (HPA). Although GABA has been suggested to inhibit HPA axis activity, their relationship has never been studied at the level of the central GABAA-benzodiazepine receptor in depressed patients or in relation to antidepressant treatment.

Methods

Eleven depressed outpatients were compared, before and after treatment with citalopram, with nine age-matched healthy controls. The subjects were scanned using the positron emission tomography (PET) tracer [11C]flumazenil ([11C]FMZ). Parametric voxel-by-voxel Logan plots were compared with methods based on regions of interest (ROI), to provide volume of distribution (VT) and binding potential (BPND) values. Plasma GABA levels were determined and a dexamethasone-corticotropin releasing hormone (DEX-CRH) test was performed.

Results

In MDD, parametric voxel-by-voxel Logan plots showed bilateral reduced [11C]FMZ binding in the parahippocampal gyrus and right lateral superior temporal gyrus (p uncorrected ≤0.001). In the temporal area, [11C]FMZ binding showed a strong inverse correlation with HPA axis activity. Plasma GABA did not discriminate MDD from controls, but correlated inversely with [11C]FMZ binding in the right insula. Following treatment with citalopram, voxel-based analysis revealed reduced binding in the right lateral temporal gyrus and dorsolateral prefrontal cortex.

Conclusion

The bilateral reduction in limbic parahippocampal and right temporal [11C]FMZ binding found in MDD indicates decreased GABAA-benzodiazepine receptor complex affinity and/or number. The inverse relationship between GABAA binding in the temporal lobe and HPA axis activity, suggests that HPA axis hyperactivity is partly due to reduced GABA-ergic inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007;64:193–200.

    Article  CAS  PubMed  Google Scholar 

  2. Kalueff AV, Nutt DJ. Role of GABA in anxiety and depression. Depress Anxiety 2007;24:495–517.

    Article  CAS  PubMed  Google Scholar 

  3. Strohle A, Holsboer F. Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 2003;36(Suppl 3):S207–14.

    PubMed  Google Scholar 

  4. Appelhof BC, Huyser J, Verweij M, Brouwer JP, Van DR, Fliers E, et al. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol Psychiatry 2006;59:696–701.

    Article  CAS  PubMed  Google Scholar 

  5. Brouwer JP, Appelhof BC, van Rossum EF, Koper JW, Fliers E, Huyser J, et al. Prediction of treatment response by HPA-axis and glucocorticoid receptor polymorphisms in major depression. Psychoneuroendocrinology 2006;31:1154–63.

    Article  CAS  PubMed  Google Scholar 

  6. Miklos IH, Kovacs KJ. GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 2002;113:581–92.

    Article  CAS  PubMed  Google Scholar 

  7. Petty F, Kramer GL, Gullion CM, Rush AJ. Low plasma gamma-aminobutyric acid levels in male patients with depression. Biol Psychiatry 1992;32:354–63.

    Article  CAS  PubMed  Google Scholar 

  8. Gold BI, Bowers MB Jr, Roth RH, Sweeney DW. GABA levels in CSF of patients with psychiatric disorders. Am J Psychiatry 1980;137:362–4.

    CAS  PubMed  Google Scholar 

  9. Kasa K, Otsuki S, Yamamoto M, Sato M, Kuroda H, Ogawa N. Cerebrospinal fluid gamma-aminobutyric acid and homovanillic acid in depressive disorders. Biol Psychiatry 1982;17:877–83.

    CAS  PubMed  Google Scholar 

  10. Gerner RH, Fairbanks L, Anderson GM, Young JG, Scheinin M, Linnoila M, et al. CSF neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls. Am J Psychiatry 1984;141:1533–40.

    CAS  PubMed  Google Scholar 

  11. Post RM, Ballenger JC, Hare TA, Goodwin FK, Lake CR, Jimerson DC. Cerebrospinal fluid GABA in normals and patients with affective disorders. Brain Res Bull 1980;5:755–9.

    Article  Google Scholar 

  12. Zimmer R, Teelken AW, Meier KD, Ackenheil M, Zander KJ. Preliminary studies on CSF gamma-aminobutyric acid levels in psychiatric patients before and during treatment with different psychotropic drugs. Prog Neuropsychopharmacol 1980;4:613–20.

    Article  CAS  PubMed  Google Scholar 

  13. Roy A, Dejong J, Ferraro T. CSF GABA in depressed patients and normal controls. Psychol Med 1991;21:613–8.

    Article  CAS  PubMed  Google Scholar 

  14. Honig A, Bartlett JR, Bouras N, Bridges PK. Amino acid levels in depression: a preliminary investigation. J Psychiatr Res 1988;22:159–64.

    Article  CAS  PubMed  Google Scholar 

  15. Francis PT, Poynton A, Lowe SL, Najlerahim A, Bridges PK, Bartlett JR, et al. Brain amino acid concentrations and Ca2+ dependent release in intractable depression assessed antemortem. Brain Res 1989;494:315–24.

    Article  CAS  PubMed  Google Scholar 

  16. Korpi ER, Kleinman JE, Wyatt RJ. GABA concentrations in forebrain areas of suicide victims. Biol Psychiatry 1988;23:109–14.

    Article  CAS  PubMed  Google Scholar 

  17. Cheetham SC, Crompton MR, Katona CL, Parker SJ, Horton RW. Brain GABAA/benzodiazepine binding sites and glutamic acid decarboxylase activity in depressed suicide victims. Brain Res 1988;460:114–23.

    Article  CAS  PubMed  Google Scholar 

  18. Stocks GM, Cheetham SC, Crompton MR, Katona CL, Horton RW. Benzodiazepine binding sites in amygdala and hippocampus of depressed suicide victims. J Affect Disord 1990;18:11–5.

    Article  CAS  PubMed  Google Scholar 

  19. Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OA, et al. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 1999;56:1043–7.

    Article  CAS  PubMed  Google Scholar 

  20. Sanacora G, Mason GF, Rothman DL, Krystal JH. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 2002;159:663–5.

    Article  PubMed  Google Scholar 

  21. Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004;61:705–13.

    Article  CAS  PubMed  Google Scholar 

  22. Kugaya A, Sanacora G, Verhoeff NP, Fujita M, Mason GF, Seneca NM, et al. Cerebral benzodiazepine receptors in depressed patients measured with [123I]iomazenil SPECT. Biol Psychiatry 2003;54:792–9.

    Article  CAS  PubMed  Google Scholar 

  23. Hasler G, Neumeister A, van der Veen JW, Tumonis T, Bain EE, Shen J, et al. Normal prefrontal gamma-aminobutyric acid levels in remitted depressed subjects determined by proton magnetic resonance spectroscopy. Biol Psychiatry 2005;58:969–73.

    Article  CAS  PubMed  Google Scholar 

  24. Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Ashworth F, Sule A, et al. Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiatry 2007;61:806–12.

    Article  CAS  PubMed  Google Scholar 

  25. Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Boorman E, Matthews M, et al. Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol 2008;11:255–60.

    Article  CAS  PubMed  Google Scholar 

  26. Sanacora G, Mason GF, Rothman DL, Hyder F, Ciarcia JJ, Ostroff RB, et al. Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry 2003;160:577–9.

    Article  PubMed  Google Scholar 

  27. Sanacora G, Fenton LR, Fasula MK, Rothman DL, Levin Y, Krystal JH, et al. Cortical gamma-aminobutyric acid concentrations in depressed patients receiving cognitive behavioral therapy. Biol Psychiatry 2006;59:284–6.

    Article  CAS  PubMed  Google Scholar 

  28. Mervaala E, Kononen M, Fohr J, Husso-Saastamoinen M, Valkonen-Korhonen M, Kuikka JT, et al. SPECT and neuropsychological performance in severe depression treated with ECT. J Affect Disord 2001;66:47–58.

    Article  CAS  PubMed  Google Scholar 

  29. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV axis I disorders. Clinical Version - SCID CV. Washington DC; 1997.

  30. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry 1961;4:561–71.

    CAS  PubMed  Google Scholar 

  31. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol 1959;32:50–5.

    CAS  PubMed  Google Scholar 

  32. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979;134:382–9.

    Article  CAS  PubMed  Google Scholar 

  33. Guy W. Clinical global impressions. In: Guy W, editor. ECDEU assessment manual for psychopharmacology. Rockville, MD: National Institute of Mental Health; 1976.

    Google Scholar 

  34. Heuser I, Yassouridis A, Holsboer F. The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res 1994;28:341–56.

    Article  CAS  PubMed  Google Scholar 

  35. Boellaard R, van Lingen A, van Balen SC, Hoving BG, Lammertsma AA. Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 2001;28:81–9.

    Article  CAS  PubMed  Google Scholar 

  36. Luthra SK, Osman S, Turton DR, Vaja V, Dowsett K. An automated system based on solid phase extraction and HPLC for the routine determination in plasma of unchanged 11C-deprenyl, 11C-deprenorphine, 11C-flumazenil, 11C-raclopride and 11C-Schering 23390. J Labelled Comp Radiopharm 1993;32:518–20.

    Google Scholar 

  37. Spielberger CD, Gorsuch RL, Lushene RE. STAI manual. Palo Alto, California: Consulting Psychologists Press; 1970.

    Google Scholar 

  38. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 1997;16:187–98.

    Article  CAS  PubMed  Google Scholar 

  39. West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR Jr, Kessler RM, et al. Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 1997;21:554–66.

    Article  CAS  PubMed  Google Scholar 

  40. Duvernoy HM, Bourgouin P, Cabanis EA, Cattin F, Guyot J, Iba-Zizen MT, et al. The human brain: surface, three-dimensional sectional anatomy with MRI and blood supply. 2nd ed. New York: Springer; 1999.

    Google Scholar 

  41. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10:740–7.

    CAS  PubMed  Google Scholar 

  42. Slifstein M, Laruelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med 2000;41:2083–8.

    CAS  PubMed  Google Scholar 

  43. Schuitemaker A, van Berckel BN, Kropholler MA, Veltman DJ, Scheltens P, Jonker C, et al. SPM analysis of parametric (R)-[11C]PK11195 binding images: plasma input versus reference tissue parametric methods. Neuroimage 2007;35:1473–9.

    Article  PubMed  Google Scholar 

  44. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153–8.

    Article  CAS  PubMed  Google Scholar 

  45. Klumpers UM, Veltman DJ, Boellaard R, Comans EF, Zuketto C, Yaqub M, et al. Comparison of plasma input and reference tissue models for analysing [11C]flumazenil studies. J Cereb Blood Flow Metab 2008;28:579–87.

    Article  CAS  PubMed  Google Scholar 

  46. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984;15:217–27.

    Article  CAS  PubMed  Google Scholar 

  47. Struys EA, Guerand WS, ten Brink HJ, Jakobs C. Combined method for the determination of gamma-aminobutyric and beta-alanine in cerebrospinal fluid by stable isotope dilution mass spectrometry. J Chromatogr B Biomed Sci Appl 1999;732:245–9.

    Article  CAS  PubMed  Google Scholar 

  48. Aihara M, Ida I, Yuuki N, Oshima A, Kumano H, Takahashi K, et al. HPA axis dysfunction in unmedicated major depressive disorder and its normalization by pharmacotherapy correlates with alteration of neural activity in prefrontal cortex and limbic/paralimbic regions. Psychiatry Res 2007;155:245–56.

    Article  CAS  PubMed  Google Scholar 

  49. Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S, et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 2001;158:899–905.

    CAS  PubMed  Google Scholar 

  50. Manes F, Paradiso S, Robinson RG. Neuropsychiatric effects of insular stroke. J Nerv Ment Dis 1999;187:707–12.

    Article  CAS  PubMed  Google Scholar 

  51. Malizia AL, Cunningham VJ, Bell CJ, Liddle PF, Jones T, Nutt DJ. Decreased brain GABAA-benzodiazepine receptor binding in panic disorder: preliminary results from a quantitative PET study. Arch Gen Psychiatry 1998;55:715–20.

    Article  CAS  PubMed  Google Scholar 

  52. Cameron OG, Huang GC, Nichols T, Koeppe RA, Minoshima S, Rose D, et al. Reduced gamma-aminobutyric acidA-benzodiazepine binding sites in insular cortex of individuals with panic disorder. Arch Gen Psychiatry 2007;64:793–800.

    Article  CAS  PubMed  Google Scholar 

  53. Hasler G, Nugent AC, Carlson PJ, Carson RE, Geraci M, Drevets WC. Altered cerebral gamma-aminobutyric acid type A-benzodiazepine receptor binding in panic disorder determined by [11C]flumazenil positron emission tomography. Arch Gen Psychiatry 2008;65:1166–75.

    Article  PubMed  Google Scholar 

  54. Orchinik M, Weiland NG, McEwen BS. Chronic exposure to stress levels of corticosterone alters GABAA receptor subunit mRNA levels in rat hippocampus. Brain Res Mol Brain Res 1995;34:29–37.

    Article  CAS  PubMed  Google Scholar 

  55. Orchinik M, Carroll SS, Li YH, McEwen BS, Weiland NG. Heterogeneity of hippocampal GABAA receptors: regulation by corticosterone. J Neurosci 2001;21:330–9.

    CAS  PubMed  Google Scholar 

  56. Merali Z, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO, et al. Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABAA receptor subunits in frontal cortical brain region. J Neurosci 2004;24:1478–85.

    Article  CAS  PubMed  Google Scholar 

  57. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008;213:93–118.

    Article  PubMed  Google Scholar 

  58. Brandt CA, Meller J, Keweloh L, Hoschel K, Staedt J, Munz D, et al. Increased benzodiazepine receptor density in the prefrontal cortex in patients with panic disorder. J Neural Transm 1998;105:1325–33.

    Article  CAS  PubMed  Google Scholar 

  59. Kuikka JT, Pitkanen A, Lepola U, Partanen K, Vainio P, Bergstrom KA, et al. Abnormal regional benzodiazepine receptor uptake in the prefrontal cortex in patients with panic disorder. Nucl Med Commun 1995;16:273–80.

    Article  CAS  PubMed  Google Scholar 

  60. Abadie P, Boulenger JP, Benali K, Barre L, Zarifian E, Baron JC. Relationships between trait and state anxiety and the central benzodiazepine receptor: a PET study. Eur J Neurosci 1999;11:1470–8.

    Article  CAS  PubMed  Google Scholar 

  61. Bhagwagar Z, Wylezinska M, Taylor M, Jezzard P, Matthews PM, Cowen PJ. Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am J Psychiatry 2004;161:368–70.

    Article  PubMed  Google Scholar 

  62. Inder WJ, Prickett TC, Mulder RT, Donald RA, Joyce PR. Reduction in basal afternoon plasma ACTH during early treatment of depression with fluoxetine. Psychopharmacology (Berl) 2001;156:73–8.

    Article  CAS  Google Scholar 

  63. Holmes AP, Blair RC, Watson JD, Ford I. Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 1996;16:7–22.

    Article  CAS  PubMed  Google Scholar 

  64. Westfall PH, Young SS. Resampling-based multiple testing. New York: Wiley; 1993. p. 44–6.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Jakobs and his neuroendocrinology laboratory for measurements of plasma GABA, neuroradiology staff for interpretation of MRI scans, and the staff of the Department of Nuclear Medicine & PET Research for tracer production, technical assistance and data acquisition. We would also like to thank Ferring Pharmaceuticals Ltd. for generously providing human CRH. This work was supported in part by ZONMW, The Netherlands (Dutch Organization for Health Research and Development), grant no. 907-00-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula M. H. Klumpers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klumpers, U.M.H., Veltman, D.J., Drent, M.L. et al. Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: preliminary results. Eur J Nucl Med Mol Imaging 37, 565–574 (2010). https://doi.org/10.1007/s00259-009-1292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1292-9

Keywords

Navigation