Skip to main content

Advertisement

Log in

A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Overexpression of HER2 receptors is a prognostic and predictive biomarker in breast cancer and a number of other malignancies. Radionuclide molecular imaging of HER2 overexpression may influence patient management making treatment more personalized. Earlier, 111In-DOTA-ZHER2:342-pep2 (ABY-002) Affibody molecule demonstrated excellent imaging of HER2-expressing xenografts in mice shortly after injection. The use of the positron-emitting nuclide 68Ga instead of 111In might increase both the sensitivity of HER2 imaging and accuracy of expression quantification. The goal of this study was to prepare and characterize 68Ga-labelled ABY-002.

Methods

68Ga labelling of ABY-002 was optimized. In vitro cell binding and procession of 68Ga-ABY-002 was evaluated. Biodistribution and tumour targeting of 68Ga-ABY-002 and 111In-ABY-002 was compared in vivo by paired-label experiments.

Results

ABY-002 was incubated with 68Ga at 90°C for 10 min resulting in a radiochemical labelling yield of over 95%. Capacity for specific binding to HER2-expressing cells was retained. In vivo, both 68Ga-ABY-002 and 111In-ABY-002 demonstrated specific targeting of SKOV-3 xenografts and high-contrast imaging. Background radioactivity in blood, lungs, gastrointestinal tract and muscle fell more rapidly for 68Ga-ABY-002 compared with 111In-ABY-002 favouring imaging shortly after injection. For 68Ga-ABY-002, a tumour uptake of 12.4 ± 3.8%ID/g and a tumour to blood ratio of 31 ± 13 were achieved at 2 h post-injection.

Conclusion

68Ga-ABY-002 is easy to label and provides high-contrast imaging within 2 h after injection. This makes it a promising candidate for clinical molecular imaging of HER2 expression in malignant tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127–37.

    Article  CAS  PubMed  Google Scholar 

  2. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 2006;7:505–16.

    Article  CAS  PubMed  Google Scholar 

  3. Carlsson J. EGFR-family expression and implications for targeted radionuclide therapy. In: Stigbrand T, Carlsson J, Adams G, editors. Targeted radionuclide tumor therapy: biological aspects. New York: Springer; 2008. p. 25–58.

    Chapter  Google Scholar 

  4. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007;25:118–45.

    Article  CAS  PubMed  Google Scholar 

  5. Molina R, Barak V, van Dalen A, Duffy MJ, Einarsson R, Gion M, et al. Tumor markers in breast cancer-European Group on Tumor Markers recommendations. Tumour Biol 2005;26:281–93.

    Article  PubMed  Google Scholar 

  6. Verri E, Guglielmini P, Puntoni M, Perdelli L, Papadia A, Lorenzi P, et al. HER2/neu oncoprotein overexpression in epithelial ovarian cancer: evaluation of its prevalence and prognostic significance. Clinical study. Oncology 2005;68:154–61.

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura H, Kawasaki N, Taguchi M, Kabasawa K. Association of HER-2 overexpression with prognosis in nonsmall cell lung carcinoma: a metaanalysis. Cancer 2005;103:1865–73.

    Article  CAS  PubMed  Google Scholar 

  8. Morote J, de Torres I, Caceres C, Vallejo C, Schwartz S Jr, Reventos J. Prognostic value of immunohistochemical expression of the c-erbB-2 oncoprotein in metastasic prostate cancer. Int J Cancer 1999;84:421–5.

    Article  CAS  PubMed  Google Scholar 

  9. Shi Y, Brands FH, Chatterjee S, Feng AC, Groshen S, Schewe J, et al. Her-2/neu expression in prostate cancer: high level of expression associated with exposure to hormone therapy and androgen independent disease. J Urol 2001;166:1514–9.

    Article  CAS  PubMed  Google Scholar 

  10. Carles J, Lloreta J, Salido M, Font A, Suarez M, Baena V, et al. Her-2/neu expression in prostate cancer: a dynamic process? Clin Cancer Res 2004;10:4742–5.

    Article  CAS  PubMed  Google Scholar 

  11. Tolmachev V. Imaging of HER-2 overexpression in tumors for guiding therapy. Curr Pharm Des 2008;14:2999–3019.

    Article  CAS  PubMed  Google Scholar 

  12. Dijkers EC, de Vries EG, Kosterink JG, Brouwers AH, Lub-de Hooge MN. Immunoscintigraphy as potential tool in the clinical evaluation of HER2/neu targeted therapy. Curr Pharm Des 2008;14:3348–62.

    Article  CAS  PubMed  Google Scholar 

  13. Nygren PA. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 2008;275:2668–76.

    Article  CAS  PubMed  Google Scholar 

  14. Orlova A, Feldwisch J, Abrahmsén L, Tolmachev V. Update: affibody molecules for molecular imaging and therapy for cancer. Cancer Biother Radiopharm 2007;22:573–84.

    Article  CAS  PubMed  Google Scholar 

  15. Mume E, Orlova A, Larsson B, Nilsson AS, Nilsson FY, Sjöberg S, et al. Evaluation of ((4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjug Chem 2005;16:1547–55.

    Article  CAS  PubMed  Google Scholar 

  16. Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J. [18F]FBEM-Z(HER2:342)-Affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 2008;35:1008–18.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng Z, De Jesus OP, Namavari M, De A, Levi J, Webster JM, et al. Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med 2008;49:804–13.

    Article  CAS  PubMed  Google Scholar 

  18. Wållberg H, Ahlgren S, Widström C, Orlova A. Evaluation of the radiocobalt-labeled [MMA-DOTA-Cys61]-Z HER2:2395(-Cys) affibody molecule for targeting of HER2-expressing tumors. Mol Imaging Biol 2010;12:54–62.

    Article  PubMed  Google Scholar 

  19. Orlova A, Wållberg H, Stone-Elander S, Tolmachev V. On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model. J Nucl Med 2009;50:417–25.

    Article  CAS  PubMed  Google Scholar 

  20. Kramer-Marek G, Kiesewetter DO, Capala J. Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and (18)F-labeled affibody molecules. J Nucl Med 2009;50:1131–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rösch F, Knapp FF. Radionuclide generators. In: Vértes A, Nagy S, Klencsár Z, Rösch F, editors. Handbook of nuclear chemistry. Dordrecht: Kluwer Academic; 2003;4. p. 81–118.

  22. Velikyan I, Beyer GJ, Långström B. Microwave-supported preparation of (68)Ga bioconjugates with high specific radioactivity. Bioconjug Chem 2004;15:554–60.

    Article  CAS  PubMed  Google Scholar 

  23. Breeman WA, de Jong M, de Blois E, Bernard BF, Konijnenberg M, Krenning EP. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 2005;32:478–85.

    Article  CAS  PubMed  Google Scholar 

  24. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med 2007;48:1741–8.

    Article  CAS  PubMed  Google Scholar 

  25. Meyer GJ, Mäcke H, Schuhmacher J, Knapp WH, Hofmann M. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging 2004;31:1097–104.

    Article  CAS  PubMed  Google Scholar 

  26. Decristoforo C, Hernandez Gonzalez I, Carlsen J, Rupprich M, Huisman M, Virgolini I, et al. 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 2008;35:1507–15.

    Article  PubMed  Google Scholar 

  27. Maecke HR, André JP. 68Ga-PET radiopharmacy: a generator-based alternative to 18F-radiopharmacy. Ernst Schering Res Found Workshop 2007;62:215–42.

    Article  CAS  PubMed  Google Scholar 

  28. Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandström M, et al. Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 2007;67:2178–86.

    Article  CAS  PubMed  Google Scholar 

  29. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 2007;34:982–93.

    Article  CAS  PubMed  Google Scholar 

  30. Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, et al. A gallium-labeled DOTA-alpha-melanocyte-stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med 2004;45:116–23.

    CAS  PubMed  Google Scholar 

  31. Zhang H, Schuhmacher J, Waser B, Wild D, Eisenhut M, Reubi JC, et al. DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging 2007;34:1198–208.

    Article  PubMed  Google Scholar 

  32. Persson M, Tolmachev V, Andersson K, Gedda L, Sandström M, Carlsson J. [(177)Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumour cells. Eur J Nucl Med Mol Imaging 2005;32:1457–62.

    Article  CAS  PubMed  Google Scholar 

  33. Wållberg H, Orlova A. Slow internalization of anti-HER2 synthetic affibody monomer 111In-DOTA-ZHER2:342-pep2: implications for development of labeled tracers. Cancer Biother Radiopharm 2008;23:435–42.

    Article  PubMed  Google Scholar 

  34. Orlova A, Wållberg H, Tolmachev V. Optimisation of specific radioactivity of Affibody molecule enables in vivo discrimination between high and low HER2 expression. Eur J Nucl Med Mol Imaging 2008;35 Suppl 2:S187.

    Google Scholar 

  35. Arora P, Oas TG, Myers JK. Fast and faster: a designed variant of the B-domain of protein A folds in 3 microsec. Protein Sci 2004;13:847–53.

    Article  CAS  PubMed  Google Scholar 

  36. Ahlgren S, Wållberg H, Tran TA, Widström C, Hjertman M, Abrahmsén L, et al. Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J Nucl Med 2009;50:781–9.

    Article  CAS  PubMed  Google Scholar 

  37. Wei L, Zhang X, Gallazzi F, Miao Y, Jin X, Brechbiel MW, et al. Melanoma imaging using (111)In-, (86)Y- and (68)Ga-labeled CHX-A''-Re(Arg11)CCMSH. Nucl Med Biol 2009;36:345–54.

    Article  CAS  PubMed  Google Scholar 

  38. de Jong M, Bakker WH, Krenning EP, Breeman WA, van der Pluijm ME, Bernard BF, et al. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med 1997;24:368–71.

    Article  PubMed  Google Scholar 

  39. Heppeler A, Froidevaux S, Mäcke H, Jermann E, Béhé M, Powell P, et al. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem Eur J 1999;5:1974–81.

    Article  CAS  Google Scholar 

  40. Froidevaux S, Eberle AN, Christe M, Sumanovski L, Heppeler A, Schmitt JS, et al. Neuroendocrine tumor targeting: study of novel gallium-labeled somatostatin radiopeptides in a rat pancreatic tumor model. Int J Cancer 2002;98:930–7.

    Article  CAS  PubMed  Google Scholar 

  41. Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 2004;22:701–6.

    Article  CAS  PubMed  Google Scholar 

  42. Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65:1471–8.

    Article  CAS  PubMed  Google Scholar 

  43. Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol 2002;29:599–606.

    Article  CAS  PubMed  Google Scholar 

  44. Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J, et al. Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med 2009;50:974–81.

    Article  CAS  PubMed  Google Scholar 

  45. Webster JM, Zhang R, Gambhir SS, Cheng Z, Syud FA. Engineered two-helix small proteins for molecular recognition. Chembiochem 2009;10:1293–6.

    Article  CAS  PubMed  Google Scholar 

  46. Ren G, Zhang R, Liu Z, Webster JM, Miao Z, Gambhir SS, et al. A 2-helix small protein labeled with 68Ga for PET imaging of HER2 expression. J Nucl Med 2009;50(9):1492–9.

    Article  CAS  PubMed  Google Scholar 

  47. Melis M, Bijster M, de Visser M, Konijnenberg MW, de Swart J, Rolleman EJ, et al. Dose-response effect of Gelofusine on renal uptake and retention of radiolabelled octreotate in rats with CA20948 tumours. Eur J Nucl Med Mol Imaging 2009 Jul 8. [Epub ahead of print].

  48. Bernard BF, Krenning EP, Breeman WA, Rolleman EJ, Bakker WH, Visser TJ, et al. D-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med 1997;38(12):1929–33.

    CAS  PubMed  Google Scholar 

  49. Vegt E, van Eerd JE, Eek A, Oyen WJ, Wetzels JF, de Jong M, et al. Reducing renal uptake of radiolabeled peptides using albumin fragments. J Nucl Med 2008;49(9):1506–11.

    Article  CAS  PubMed  Google Scholar 

  50. Béhé M, Kluge G, Becker W, Gotthardt M, Behr TM. Use of polyglutamic acids to reduce uptake of radiometal-labeled minigastrin in the kidneys. J Nucl Med 2005;46(6):1012–5.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Swedish Cancer Society (Cancerfonden) and the Swedish Research Council (Vetenskapsrådet). UASL, GE Healthcare is acknowledged for the kind permission to access the 68Ge/68Ga generator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Tolmachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolmachev, V., Velikyan, I., Sandström, M. et al. A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue. Eur J Nucl Med Mol Imaging 37, 1356–1367 (2010). https://doi.org/10.1007/s00259-009-1367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1367-7

Keywords

Navigation