Skip to main content

Advertisement

Log in

Optical techniques for the molecular imaging of angiogenesis

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The process of angiogenesis, an essential hallmark for tumour development as well as for several inflammatory diseases and physiological phenomena, is of growing interest for diagnosis and therapy in oncology. In the context of biochemical characterisation of key molecules involved in angiogenesis, several targets for imaging and therapy could be identified in the last decade. Optical imaging (OI) relies on the visualisation of near infrared (NIR) light, either its absorption and scattering in tissue (non-enhanced OI) or using fluorescent contrast agents. OI offers excellent signal to noise ratios due to virtually absent background fluorescence in the NIR range and is thus a versatile tool to image specific molecular target structures in vivo. This work intends to provide a survey of the different approaches to imaging of angiogenesis using OI methods in preclinical research as well as first clinical trials. Different imaging modalities as well as various optical contrast agents are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  2. Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT, Wang RA, et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 2009;326:294–8.

    Article  CAS  PubMed  Google Scholar 

  3. Gordon MS, Mendelson DS, Kato G. Tumor angiogenesis and novel antiangiogenic strategies. Int J Cancer 2010;126:1777–87. doi:10.1002/ijc.25026.

    Google Scholar 

  4. Smollich M, Wülfing P. The endothelin axis: a novel target for pharmacotherapy of female malignancies. Curr Vasc Pharmacol 2007;5:239–48.

    Article  CAS  PubMed  Google Scholar 

  5. Jakobsson L, Bentley K, Gerhardt H. VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 2009;37:1233–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hsu AR, Chen X. Advances in anatomic, functional, and molecular imaging of angiogenesis. J Nucl Med 2008;49:511–4.

    Article  PubMed  Google Scholar 

  7. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  8. Persigehl T, Heindel W, Bremer C. Modern magnetic resonance procedures for assessing tumor response. Radiologe 2008;48:863–70. doi:10.1007/s00117-008-1728-4.

    Article  CAS  PubMed  Google Scholar 

  9. Persigehl T, Matuszewski L, Kessler T, Wall A, Meier N, Ebert W, et al. Prediction of antiangiogenic treatment efficacy by iron oxide enhanced parametric magnetic resonance imaging. Invest Radiol 2007;42:791–6. doi:10.1097/RLI.0b013e3180d5cbd9.

    Article  PubMed  Google Scholar 

  10. Persigehl T, Bieker R, Matuszewski L, Wall A, Kessler T, Kooijman H, et al. Antiangiogenic tumor treatment: early noninvasive monitoring with USPIO-enhanced MR imaging in mice. Radiology 2007;244:449–56.

    Article  PubMed  Google Scholar 

  11. Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 2008;49 Suppl 2:113S–28.

    Article  CAS  PubMed  Google Scholar 

  12. Virostko J, Xie J, Hallahan DE, Arteaga CL, Gore JC, Manning HC. A molecular imaging paradigm to rapidly profile response to angiogenesis-directed therapy in small animals. Mol Imaging Biol 2009;11:204–12. doi:10.1007/s11307-008-0193-9.

    Article  PubMed  Google Scholar 

  13. Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nährig J, Watzlowik P, et al. Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 2008;49:255–9.

    Article  PubMed  Google Scholar 

  14. Pathak AP, Hochfeld WE, Goodman SL, Pepper MS. Circulating and imaging markers for angiogenesis. Angiogenesis 2008;11:321–35. doi:10.1007/s10456-008-9119-z.

    Article  CAS  PubMed  Google Scholar 

  15. Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 2003;13:231–43. doi:10.1007/s00330-002-1610-0.

    PubMed  Google Scholar 

  16. Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 2003;13:195–208. doi:10.1007/s00330-002-1524-x.

    PubMed  Google Scholar 

  17. Bremer C, Werner S, Langer H-E. Assessing activity of rheumatic arthritis with fluorescence optical imaging. Eur Musculoskeletal Rev 2009;4:96–100.

    Google Scholar 

  18. Bremer C, Tung CH, Weissleder R. Molecular imaging of MMP expression and therapeutic MMP inhibition. Acad Radiol 2002;9 Suppl 2:S314–5.

    Article  PubMed  Google Scholar 

  19. Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, Weissleder R. Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 2007;242:751–8.

    Article  PubMed  Google Scholar 

  20. Montet X, Ntziachristos V, Grimm J, Weissleder R. Tomographic fluorescence mapping of tumor targets. Cancer Res 2005;65:6330–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ntziachristos V, Bremer C, Graves EE, Ripoll J, Weissleder R. In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 2002;1:82–8.

    Article  PubMed  Google Scholar 

  22. Bartels M, Chen W, Bardhan R, Ke S, Halas NJ, Wareing T, et al. Multimodal optical molecular image reconstruction with frequency domain measurements. Conf Proc IEEE Eng Med Biol Soc 2009;2009:6655–8.

    CAS  PubMed  Google Scholar 

  23. Unlu MB, Lin Y, Birgul O, Nalcioglu O, Gulsen G. Simultaneous in vivo dynamic magnetic resonance-diffuse optical tomography for small animal imaging. J Biomed Opt 2008;13:060501. doi:10.1117/1.3041165.

    Article  PubMed  Google Scholar 

  24. Kaijzel EL, van der Pluijm G, Löwik CW. Whole-body optical imaging in animal models to assess cancer development and progression. Clin Cancer Res 2007;13:3490–7.

    Article  PubMed  Google Scholar 

  25. Fuchsjaeger MH, Flöry D, Reiner CS, Rudas M, Riedl CC, Helbich TH. The negative predictive value of electrical impedance scanning in BI-RADS category IV breast lesions. Invest Radiol 2005;40:478–85.

    Article  PubMed  Google Scholar 

  26. Cutler M. Transillumination of the breast. Ann Surg 1931;93:223–34.

    Article  CAS  PubMed  Google Scholar 

  27. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, et al. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2000;2:26–40.

    Article  CAS  PubMed  Google Scholar 

  28. Boas D. A fundamental limitation of linearized algorithms for diffuse optical tomography. Opt Express 1997;1:404–13.

    Article  CAS  PubMed  Google Scholar 

  29. Floery D, Helbich TH, Riedl CC, Jaromi S, Weber M, Leodolter S, et al. Characterization of benign and malignant breast lesions with computed tomography laser mammography (CTLM): initial experience. Invest Radiol 2005;40:328–35.

    Article  PubMed  Google Scholar 

  30. Poellinger A, Martin JC, Ponder SL, Freund T, Hamm B, Bick U, et al. Near-infrared laser computed tomography of the breast first clinical experience. Acad Radiol 2008;15:1545–53.

    Article  PubMed  Google Scholar 

  31. Lungu GF, Li ML, Xie X, Wang LV, Stoica G. In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion. Int J Oncol 2007;30:45–54.

    PubMed  Google Scholar 

  32. Slakter JS, Yannuzzi LA, Guyer DR, Sorenson JA, Orlock DA. Indocyanine-green angiography. Curr Opin Ophthalmol 1995;6:25–32.

    CAS  PubMed  Google Scholar 

  33. Wall A, Persigehl T, Hauff P, Licha K, Schirner M, Müller S, et al. Differentiation of angiogenic burden in human cancer xenografts using a perfusion-type optical contrast agent (SIDAG). Breast Cancer Res 2008;10:R23.

    Article  PubMed  Google Scholar 

  34. Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 2006;8:226–36. doi:10.1007/s11307-006-0041-8.

    Article  PubMed  Google Scholar 

  35. Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A 2000;97:2767–72.

    Article  CAS  PubMed  Google Scholar 

  36. van de Ven S, Wiethoff A, Nielsen T, Brendel B, van der Voort M, Nachabe R, et al. A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients. Mol Imaging Biol 2010;12:343–8. doi:10.1007/s11307-009-0269-1.

    Article  PubMed  Google Scholar 

  37. van de Ven SM, Elias SG, Wiethoff AJ, van der Voort M, Nielsen T, Brendel B, et al. Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging. Eur Radiol 2009;19:1108–13. doi:10.1007/s00330-008-1268-3.

    Article  PubMed  Google Scholar 

  38. van de Ven S, Elias S, Wiethoff A, van der Voort M, Leproux A, Nielsen T, et al. Diffuse optical tomography of the breast: initial validation in benign cysts. Mol Imaging Biol 2009;11:64–70. doi:10.1007/s11307-008-0176-x.

    Article  PubMed  Google Scholar 

  39. Hanyu A, Kojima K, Hatake K, Nomura K, Murayama H, Ishikawa Y, et al. Functional in vivo optical imaging of tumor angiogenesis, growth, and metastasis prevented by administration of anti-human VEGF antibody in xenograft model of human fibrosarcoma HT1080 cells. Cancer Sci 2009;100:2085–92.

    Article  CAS  PubMed  Google Scholar 

  40. Chang SK, Rizvi I, Solban N, Hasan T. In vivo optical molecular imaging of vascular endothelial growth factor for monitoring cancer treatment. Clin Cancer Res 2008;14:4146–53.

    Article  CAS  PubMed  Google Scholar 

  41. Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR. Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Ther 2007;6:1230–8.

    Article  CAS  PubMed  Google Scholar 

  42. Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, et al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 2007;13:504–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wang H, Chen K, Niu G, Chen X. Site-specifically biotinylated VEGF(121) for near-infrared fluorescence imaging of tumor angiogenesis. Mol Pharm 2009;6:285–94.

    Article  CAS  PubMed  Google Scholar 

  44. Arnaout MA. Integrin structure: new twists and turns in dynamic cell adhesion. Immunol Rev 2002;186:125–40.

    Article  CAS  PubMed  Google Scholar 

  45. Arnaout MA, Goodman SL, Xiong JP. Coming to grips with integrin binding to ligands. Curr Opin Cell Biol 2002;14:641–51.

    Article  CAS  PubMed  Google Scholar 

  46. Hsu AR, Hou LC, Veeravagu A, Greve JM, Vogel H, Tse V, et al. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model. Mol Imaging Biol 2006;8:315–23. doi:10.1007/s11307-006-0059-y.

    Article  PubMed  Google Scholar 

  47. Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA. Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 2003;162:933–43.

    Article  CAS  PubMed  Google Scholar 

  48. Schottelius M, Laufer B, Kessler H, Wester HJ. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 2009;42:969–80. doi:10.1021/ar800243b.

    Article  CAS  PubMed  Google Scholar 

  49. Dechantsreiter MA, Planker E, Mathä B, Lohof E, Hölzemann G, Jonczyk A, et al. N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem 1999;42:3033–40.

    Article  CAS  PubMed  Google Scholar 

  50. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 2006;26:2103–9.

    Article  CAS  PubMed  Google Scholar 

  51. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003;108:2270–4.

    Article  CAS  PubMed  Google Scholar 

  52. Xie J, Chen K, Lee HY, Xu C, Hsu AR, Peng S, et al. Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin alpha(v)beta3-rich tumor cells. J Am Chem Soc 2008;130:7542–3. doi:10.1021/ja802003h.

    Article  CAS  PubMed  Google Scholar 

  53. Achilefu S, Bloch S, Markiewicz MA, Zhong T, Ye Y, Dorshow RB, et al. Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc Natl Acad Sci U S A 2005;102:7976–81.

    Article  CAS  PubMed  Google Scholar 

  54. von Wallbrunn A, Höltke C, Zühlsdorf M, Heindel W, Schäfers M, Bremer C. In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography. Eur J Nucl Med Mol Imaging 2007;34:745–54. doi:10.1007/s00259-006-0269-1.

    Article  Google Scholar 

  55. Liu S, Liu Z, Chen K, Yan Y, Watzlowik P, Wester HJ, et al. (18)F-Labeled Galacto and PEGylated RGD dimers for PET imaging of alpha(v)beta (3) integrin expression. Mol Imaging Biol 2009. doi:10.1007/s11307-009-0284-2.

  56. Mulder WJ, Castermans K, van Beijnum JR, Oude Egbrink MG, Chin PT, Fayad ZA, et al. Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 2009;12:17–24. doi:10.1007/s10456-008-9124-2.

    Article  CAS  PubMed  Google Scholar 

  57. Bhagwat SV, Petrovic N, Okamoto Y, Shapiro LH. The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood 2003;101:1818–26.

    Article  CAS  PubMed  Google Scholar 

  58. Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 2001;97:652–9.

    Article  CAS  PubMed  Google Scholar 

  59. Riemann D, Kehlen A, Langner J. CD13—not just a marker in leukemia typing. Immunol Today 1999;20:83–8.

    Article  CAS  PubMed  Google Scholar 

  60. Colombo G, Curnis F, De Mori GM, Gasparri A, Longoni C, Sacchi A, et al. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J Biol Chem 2002;277:47891–7.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Z, Harada H, Tanabe K, Hatta H, Hiraoka M, Nishimoto S. Aminopeptidase N/CD13 targeting fluorescent probes: synthesis and application to tumor cell imaging. Peptides 2005;26:2182–7.

    Article  CAS  PubMed  Google Scholar 

  62. von Wallbrunn A, Waldeck J, Höltke C, Zühlsdorf M, Mesters R, Heindel W, et al. In vivo optical imaging of CD13/APN-expression in tumor xenografts. J Biomed Opt 2008;13:011007. doi:10.1117/1.2839046.

    Article  Google Scholar 

  63. Buehler A, van Zandvoort MA, Stelt BJ, Hackeng TM, Schrans-Stassen BH, Bennaghmouch A, et al. cNGR: a novel homing sequence for CD13/APN targeted molecular imaging of murine cardiac angiogenesis in vivo. Arterioscler Thromb Vasc Biol 2006;26:2681–7.

    Article  CAS  PubMed  Google Scholar 

  64. Dirksen A, Langereis S, de Waal BF, van Genderen MH, Meijer EW, de Lussanet QG, et al. Design and synthesis of a bimodal target-specific contrast agent for angiogenesis. Org Lett 2004;6:4857–60. doi:10.1021/ol048084u.

    Article  CAS  PubMed  Google Scholar 

  65. Salani D, Di Castro V, Nicotra MR, Rosanò L, Tecce R, Venuti A, et al. Role of endothelin-1 in neovascularization of ovarian carcinoma. Am J Pathol 2000;157:1537–47.

    CAS  PubMed  Google Scholar 

  66. Levin ER. Endothelins. N Engl J Med 1995;333:356–63.

    Article  CAS  PubMed  Google Scholar 

  67. Doherty AM, Uprichard AC. Discovery and development of an endothelin A receptor-selective antagonist PD 156707. Pharm Biotechnol 1998;11:81–112.

    Article  CAS  PubMed  Google Scholar 

  68. Höltke C, Law MP, Wagner S, Breyholz HJ, Kopka K, Bremer C, et al. Synthesis, in vitro pharmacology and biodistribution studies of new PD 156707-derived ET(A) receptor radioligands. Bioorg Med Chem 2006;14:1910–7.

    Article  PubMed  Google Scholar 

  69. Höltke C, Waldeck J, Kopka K, Heindel W, Schober O, Schäfers M, et al. Biodistribution of a nonpeptidic fluorescent endothelin A receptor imaging probe. Mol Imaging 2009;8:27–34.

    PubMed  Google Scholar 

  70. Jaffer FA, Libby P, Weissleder R. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 2009;29:1017–24.

    Article  CAS  PubMed  Google Scholar 

  71. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature 2008;452:580–9.

    Article  CAS  PubMed  Google Scholar 

  72. Enfield LC, Gibson AP, Hebden JC, Douek M. Optical tomography of breast cancer-monitoring response to primary medical therapy. Target Oncol 2009;4:219–33. doi:10.1007/s11523-009-0115-z.

    Article  PubMed  Google Scholar 

  73. Fischer T, Ebert B, Voigt J, Macdonald R, Schneider U, Thomas A, et al. Detection of rheumatoid arthritis using non-specific contrast enhanced fluorescence imaging. Acad Radiol 2010;17:375–81.

    Article  PubMed  Google Scholar 

  74. Mostafid H, Bunce C. Improved detection and reduced early recurrence of non-nuscle-invasive bladder cancer using hexaminolaevulinate fluorescence cystoscopy: results of a multicentre prospective randomized study (Pc B305). BJU Int 2009.

  75. Gahlen J, Prosst RL, Pietschmann M, Haase T, Rheinwald M, Skopp G, et al. Laparoscopic fluorescence diagnosis for intraabdominal fluorescence targeting of peritoneal carcinosis experimental studies. Ann Surg 2002;235:252–60.

    Article  PubMed  Google Scholar 

  76. Gahlen J, Pietschmann M, Prosst RL, Herfarth C. Systemic vs local administration of delta-aminolevulinic acid for laparoscopic fluorescence diagnosis of malignant intra-abdominal tumors. Experimental study. Surg Endosc 2001;15:196–9.

    Article  CAS  PubMed  Google Scholar 

  77. Gahlen J, Stern J, Laubach HH, Pietschmann M, Herfarth C. Improving diagnostic staging laparoscopy using intraperitoneal lavage of delta-aminolevulinic acid (ALA) for laparoscopic fluorescence diagnosis. Surgery 1999;126:469–73.

    CAS  PubMed  Google Scholar 

  78. Hariri LP, Bonnema GT, Schmidt K, Winkler AM, Korde V, Hatch KD, et al. Laparoscopic optical coherence tomography imaging of human ovarian cancer. Gynecol Oncol 2009;114:188–94.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bremer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenblätter, M., Höltke, C., Persigehl, T. et al. Optical techniques for the molecular imaging of angiogenesis. Eur J Nucl Med Mol Imaging 37 (Suppl 1), 127–137 (2010). https://doi.org/10.1007/s00259-010-1514-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1514-1

Keywords

Navigation