Skip to main content
Log in

Early detection and longitudinal monitoring of experimental primary and disseminated melanoma using [18F]ICF01006, a highly promising melanoma PET tracer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Here, we report a new and rapid radiosynthesis of 18F-N-[2-(diethylamino)ethyl]-6-fluoro-pyridine-3-carboxamide ([18F]ICF01006), a molecule with a high specificity for melanotic tissue, and its evaluation in a murine model for early specific detection of pigmented primary and disseminated melanoma.

Methods

[18F]ICF01006 was synthesized using a new one-step bromine-for-fluorine nucleophilic heteroaromatic substitution. Melanoma models were induced by subcutaneous (primary tumour) or intravenous (lung colonies) injection of B16BL6 melanoma cells in C57BL/6J mice. The relevance and sensitivity of positron emission tomography (PET) imaging using [18F]ICF01006 were evaluated at different stages of tumoural growth and compared to 18F-fluorodeoxyglucose ([18F]FDG).

Results

The fully automated radiosynthesis of [18F]ICF01006 led to a radiochemical yield of 61 % and a radiochemical purity >99 % (specific activity 70–80 GBq/μmol; total synthesis time 42 min). Tumours were visualized before they were palpable as early as 1 h post-injection with [18F]ICF01006 tumoural uptake of 1.64 ± 0.57, 3.40 ± 1.47 and 11.44 ± 2.67 percentage of injected dose per gram of tissue (%ID/g) at days 3, 5 and 14, respectively. [18F]ICF01006 PET imaging also allowed detection of melanoma pulmonary colonies from day 9 after tumour cell inoculation, with a lung radiotracer accumulation correlated with melanoma invasion. At day 21, radioactivity uptake in lungs reached a value of 5.23 ± 2.08 %ID/g (versus 0.41 ± 0.90 %ID/g in control mice). In the two models, comparison with [18F]FDG showed that both radiotracers were able to detect melanoma lesions, but [18F]ICF01006 was superior in terms of contrast and specificity.

Conclusion

Our promising results provide further preclinical data, reinforcing the excellent potential of [18F]ICF01006 PET imaging for early specific diagnosis and follow-up of melanin-positive disseminated melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lorigan P, Eisen T, Hauschild A. Systemic therapy for metastatic malignant melanoma—from deeply disappointing to bright future? Exp Dermatol 2008;17:383–94.

    Article  PubMed  CAS  Google Scholar 

  2. Thompson JF, Scolyer RA, Kefford RF. Cutaneous melanoma. Lancet 2005;365:687–701.

    PubMed  CAS  Google Scholar 

  3. Garbe C, Leiter U. Melanoma epidemiology and trends. Clin Dermatol 2009;27:3–9.

    Article  PubMed  Google Scholar 

  4. Jennings L, Murphy GM. Predicting outcome in melanoma: where are we now? Br J Dermatol 2009;161:496–503.

    Article  PubMed  CAS  Google Scholar 

  5. de Vries E, Bray FI, Coebergh JW, Parkin DM. Changing epidemiology of malignant cutaneous melanoma in Europe 1953-1997: rising trends in incidence and mortality but recent stabilizations in western Europe and deceases in Scandinavia. Int J Cancer 2003;107:119–26.

    Article  PubMed  Google Scholar 

  6. Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 2011;16:5–24.

    Article  PubMed  CAS  Google Scholar 

  7. Xing Y, Bronstein Y, Ross MI, Askew RL, Lee JE, Gershenwald JE, et al. Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: a meta-analysis. J Natl Cancer Inst 2011;103:129–42.

    Article  PubMed  Google Scholar 

  8. Wagner JD. A role for FDG-PET in the surgical management of stage IV melanoma. Ann Surg Oncol 2004;11:721–2.

    Article  PubMed  Google Scholar 

  9. Jiménez-Requena F, Delgado-Bolton RC, Fernández-Pérez C, Gambhir SS, Schwimmer J, Pérez-Vásquez JM, et al. Meta-analysis of the performance of (18)F-FDG PET in cutaneous melanoma. Eur J Nucl Med Mol Imaging 2010;37:284–300.

    Article  PubMed  Google Scholar 

  10. Ren G, Liu S, Liu H, Miao Z, Cheng Z. Radiofluorinated rhenium cyclized α-MSH analogues for PET imaging of melanocortin receptor 1. Bioconjug Chem 2010;21:2355–60.

    Article  PubMed  CAS  Google Scholar 

  11. Cantorias MV, Figueroa SD, Quinn TP, Lever JR, Hoffman TJ, Watkinson LD, et al. Development of high-specific-activity (68)Ga-labeled DOTA-rhenium-cyclized α-MSH peptide analog to target MC1 receptors overexpressed by melanoma tumors. Nucl Med Biol 2009;36:505–13.

    Article  PubMed  CAS  Google Scholar 

  12. Ren G, Liu Z, Miao Z, Liu H, Subbarayan M, Chin FT, et al. PET of malignant melanoma using 18F-labeled metallopeptides. J Nucl Med 2009;50:1865–72.

    Article  PubMed  CAS  Google Scholar 

  13. Cheng Z, Xiong Z, Subbarayan M, Chen X, Gambhir SS. 64Cu-labeled alpha-melanocyte-stimulating hormone analog for microPET imaging of melanocortin 1 receptor expression. Bioconjug Chem 2007;18:765–72.

    Article  PubMed  CAS  Google Scholar 

  14. Koch SE, Lange JR. Amelanotic melanoma: the great masquerader. J Am Acad Dermatol 2000;42:731–4.

    Article  PubMed  CAS  Google Scholar 

  15. Moreau MF, Michelot J, Veyre A, Madelmont JC, Godeneche D, Labarre P, et al. Agents for diagnosing and treating melanomas, aromatic halogenated derivative usable as such agents and their preparation. Patent WO/1990/009170.

  16. Chezal JM, Madelmont JC, Teulade JC, Chavignon O, Moins N. Labelled analogues of halobenzamides as radiopharmaceuticals. Patent WO/2008/12782.

  17. Michelot JM, Moreau MF, Veyre AJ, Bonafous JF, Bacin FJ, Madelmont JC, et al. Phase II scintigraphic clinical trial of malignant melanoma and metastases with iodine-123-N-(2-diethylaminoethyl 4-iodobenzamide). J Nucl Med 1993;34:1260–6.

    PubMed  CAS  Google Scholar 

  18. Maisonial A, Kuhnast B, Papon J, Boisgard R, Bayle M, Vidal A, et al. Single photon emission computed tomography/positron emission tomography imaging and targeted radionuclide therapy of melanoma: new multimodal fluorinated and iodinated radiotracers. J Med Chem 2011;54:2745–66.

    Article  PubMed  CAS  Google Scholar 

  19. Moins N, D’Incan M, Bounafous J, Bacin F, Labarre P, Moreau MF, et al. 123I-N-(2-diethylaminoethyl)-2-iodobenzamide: a potential agent for cutaneous melanoma staging. Eur J Nucl Med Mol Imaging 2002;29:1478–84.

    Article  PubMed  CAS  Google Scholar 

  20. Garg S, Khotari K, Thopate SR, Doke AK, Garg PK. Design, synthesis, and preliminary in vitro and in vivo evaluation of N-(2-diethylaminoethyl)-4-[18F]fluorobenzamide ([18F]DAFBA): a novel potential PET probe to image melanoma tumors. Bioconjug Chem 2009;20:583–90.

    Article  PubMed  CAS  Google Scholar 

  21. Ren G, Miao Z, Liu H, Jiang L, Limpa-Amara N, Mahmood A, et al. Melanin-targeted preclinical PET imaging of melanoma metastasis. J Nucl Med 2009;50:1692–9.

    Article  PubMed  CAS  Google Scholar 

  22. Greguric I, Taylor SR, Denoyer D, Ballantyne P, Berghofer P, Roselt P, et al. Discovery of [18F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide: a melanoma positron emission tomography imaging radiotracer with high tumor to body contrast ratio and rapid renal clearance. J Med Chem 2009;52:5299–302.

    Article  PubMed  CAS  Google Scholar 

  23. Denoyer D, Greguric I, Roselt P, Neels OC, Aide N, Taylor SR, et al. High-contrast PET of melanoma using (18)F-MEL050, a selective probe for melanin with predominantly renal clearance. J Nucl Med 2010;51:441–7.

    Article  PubMed  CAS  Google Scholar 

  24. Mock BH, Winkle W, Vavrek MT. A color spot test for the detection of Kryptofix 2.2.2 in [18F]FDG preparations. Nucl Med Biol 1997;24:193–5.

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Seidel J, Tsui BMW, Vaquero JJ, Pomper MG. Performance evaluation of GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 2006;47:1891–900.

    PubMed  Google Scholar 

  26. Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N, et al. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 1990;170:223–30.

    Article  PubMed  CAS  Google Scholar 

  27. Labarre P, Papon J, Moreau MF, Moins N, Bayle M, Veyre A, et al. Melanin affinity of N-(2-diethylaminoethyl)-4-iodobenzamide, an effective melanoma imaging agent. Melanoma Res 2002;12:115–21.

    Article  PubMed  CAS  Google Scholar 

  28. Labarre P, Papon J, Rose AH, Guerquin-Kern JL, Morandeau L, Wu TD, et al. Melanoma affinity in mice and immunosuppressed sheep of [(125)I]N-(4-dipropylaminobutyl)-4-iodobenzamide, a new targeting agent. Nucl Med Biol 2008;35:783–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by TRT/PET/MEL Program (2008-2013) of CLARA Rhône-Alpes Auvergne. The [18F]FDG tracer was kindly provided by the Cancer Center Jean Perrin of Clermont-Ferrand, France (GlucoTEP/CYCLOPHARMA Laboratories). The authors would like to acknowledge Janine Papon and Pr. Laurent Sarry for their excellent technical and scientific help.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Rbah-Vidal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rbah-Vidal, L., Vidal, A., Besse, S. et al. Early detection and longitudinal monitoring of experimental primary and disseminated melanoma using [18F]ICF01006, a highly promising melanoma PET tracer. Eur J Nucl Med Mol Imaging 39, 1449–1461 (2012). https://doi.org/10.1007/s00259-012-2168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2168-y

Keywords

Navigation