Skip to main content

Advertisement

Log in

Osteoid osteoma: multimodality imaging with focus on hybrid imaging

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Osteoid osteoma is a painful, benign, osteoblastic lesion that occurs in younger patients and affects the extremities or the axial skeleton. While plain film findings may suggest the diagnosis, in complex anatomical regions such as the spine, pelvis, wrist and foot advanced imaging modalities are often required. A typical nidus surrounded by sclerosis or cortical thickening characterizes osteoid osteoma on plain radiography and CT. MR is the cross-sectional imaging modality of choice for most musculoskeletal disorders. Unfortunately, extensive accompanying bone marrow oedema, soft-tissue alterations, difficulty detecting the nidus, and lesion locations close to a joint (with reactive arthritis) may make a confident diagnosis of osteoid osteoma by MR imaging difficult. Hybrid imaging with bone-seeking tracers such as SPECT/CT with 99mTc-labelled bisphosphonates or PET/CT with 18F-labelled sodium fluoride (18F-NaF) combines high radionuclide uptake with morphological details and provides accurate diagnosis of osteoid osteoma and additional information for treatment planning. FDG is not the recommended PET tracer because osteoid osteoma is normally FDG-negative, although some osteoid osteomas may show increased FDG uptake. Osteoblastoma, Brodie’s abscess and stress fractures may mimic osteoid osteoma on imaging and clinical presentation. Once identified as the pain generator, destruction of the osteoid osteoma nidus by ablation or resection techniques usually leads to complete healing. Image-guided drill excision and radiofrequency ablation are widely used interventions. We review the presentation of osteoid osteoma across all imaging modalities, with special focus on hybrid imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bergstrand H. Uber eine eigenartige, wahrscheinlich bisher nicht beschriebene osteoblastiche krankheit in den langen knochen der hand und des fusses. Acta Radiol. 1930;11:596–613.

    Article  Google Scholar 

  2. Jaffe H. Osteoid osteoma: a benign osteoblastic tumor composed of osteoid and atypical bone. Arch Surg. 1935;31:709–28.

    Article  Google Scholar 

  3. Klein MH, Shankman S. Osteoid osteoma: radiologic and pathologic correlation. Skelet Radiol. 1992;21:23–31.

    Article  CAS  Google Scholar 

  4. Loizaga JM, Calvo M, Lopez BF, Martinez TFJ, Perez VJ. Osteoblastoma and osteoid osteoma: clinical and morphological features of 162 cases. Pathol Res Pract. 1993;189:33–41.

    Article  CAS  Google Scholar 

  5. Steiner GC. Ultrastructure of osteoid osteoma. Hum Pathol. 1976;7:309–25.

    Article  CAS  Google Scholar 

  6. Kayser F, Resnick D, Haghighi P, Pereira E, Greenway G, Schweitzer M, et al. Evidence of the subperiosteal origin of osteoid osteomas in tubular bones: analysis by CT and MR imaging. AJR Am J Roentgenol. 1998;170:609–14.

    Article  CAS  Google Scholar 

  7. Chai JW, Hong SH, Choi JY, Koh YH, Lee JW, Choi JA, et al. Radiologic diagnosis of osteoid osteoma: from simple to challenging findings. Radiographics. 2010;30(3):737–49. https://doi.org/10.1148/rg.303095120.

    Article  PubMed  Google Scholar 

  8. Iyer RS, Chapman T, Chew FS. Pediatric bone imaging: diagnostic imaging of osteoid osteoma. AJR Am J Roentgenol. 2012;198(5):1039–52. https://doi.org/10.2214/AJR.10.7313.

    Article  PubMed  Google Scholar 

  9. Kransdorf MJ, Stull MA, Gilkey FW, Moser RP Jr. Osteoid osteoma. Radiographics. 1991;11(4):671–96. https://doi.org/10.1148/radiographics.11.4.1887121.

    Article  CAS  PubMed  Google Scholar 

  10. Kneisl JS, Simon MA. Medical management compared with operative treatment for osteoid-osteoma. J Bone Joint Surg Am. 1992;74:179–85.

    Article  CAS  Google Scholar 

  11. Laurence N, Epelman M, Markowitz RI, Jaimes C, Jaramillo D, Chauvin NA. Osteoid osteomas: a pain in the night diagnosis. Pediatr Radiol. 2012;42(12):1490–501. https://doi.org/10.1007/s00247-012-2495-y.

    Article  PubMed  Google Scholar 

  12. Lee EH, Shafi M, Hui JH. Osteoid osteoma: a current review. J Pediatr Orthop. 2006;26(5):695–700. https://doi.org/10.1097/01.bpo.0000233807.80046.7c.

    Article  PubMed  Google Scholar 

  13. Swee RG, McLeod RA, Beabout JW. Osteoid osteoma. Detection, diagnosis, and localization. Radiology. 1979;130:117–23.

    Article  CAS  Google Scholar 

  14. Ebrahim FS, Jacobson JA, Lin J, Housner JA, Hayes CW, Resnick D. Intraarticular osteoid osteoma: sonographic findings in three patients with radiographic, CT, and MR imaging correlation. AJR Am J Roentgenol. 2001;177:1391–5.

    Article  CAS  Google Scholar 

  15. Gil S, Marco SF, Arenas J, Irurzun J, Agullo T, Alonso S, et al. Doppler duplex color localization of osteoid osteomas. Skelet Radiol. 1999;28:107–10.

    Article  CAS  Google Scholar 

  16. Helms CA, Hattner RS, Vogler JB. Osteoid osteoma: radionuclide diagnosis. Radiology. 1984;151:779–84.

    Article  CAS  Google Scholar 

  17. Lindbom A, Lindvall N, Soderberg G, Spjut H. Angiography in osteoid osteoma. Acta Radiol. 1960;54:327–33.

    Article  CAS  Google Scholar 

  18. von Kalle T, Langendorfer M, Fernandez FF, Winkler P. Combined dynamic contrast-enhancement and serial 3D-subtraction analysis in magnetic resonance imaging of osteoid osteomas. Eur Radiol. 2009;19(10):2508–17. https://doi.org/10.1007/s00330-009-1430-6.

    Article  Google Scholar 

  19. Greco F, Tamburrelli F, Ciabattoni G. Prostaglandins in osteoid osteoma. Int Orthop. 1991;15:35–7.

    Article  CAS  Google Scholar 

  20. Mungo DV, Zhang X, O’Keefe RJ. COX-1 and COX-2 expression in osteoid osteomas. J Orthop Res. 2002;20:159–62.

    Article  CAS  Google Scholar 

  21. Gautschi M, Strobel K, Schoniger R, Pfeiffer D, Schmid L. A special case of monoarthritis of the elbow. Z Rheumatol. 2017;76(7):636–9. https://doi.org/10.1007/s00393-017-0359-4.

    Article  CAS  PubMed  Google Scholar 

  22. Basu S, Basu P, Dowell J. Painless osteoid osteoma in a metacarpal. J Hand Surg Br. 1999;24:133–4.

    Article  CAS  Google Scholar 

  23. Ekmekci P, Bostanci S, Erdogan N, Akcaboy B, Guergey E. A painless subungual osteoid osteoma. Dermatol Surg. 2001;27:764–5.

    CAS  PubMed  Google Scholar 

  24. Papathanassiou ZG, Megas P, Petsas T, Papachristou DJ, Nilas J, Siablis D. Osteoid osteoma: diagnosis and treatment. Orthopedics. 2008;31(11):1118.

    Article  Google Scholar 

  25. Edeiken J, DePalma AF, Hodes PJ. Osteoid osteoma. (Roentgenographic emphasis). Clin Orthop Relat Res. 1966;49:201–6.

    Article  CAS  Google Scholar 

  26. Graham GN, Browne H. Primary bony tumors of the pediatric spine. Yale J Biol Med. 2001;74(1):1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Healey JH, Ghelman B. Osteoid osteoma and osteoblastoma. Current concepts and recent advances. Clin Orthop Relat Res. 1986;204:76–85.

    Google Scholar 

  28. Ghanem I. The management of osteoid osteoma: updates and controversies. Curr Opin Pediatr. 2006;18(1):36–41. https://doi.org/10.1097/01.mop.0000193277.47119.15.

    Article  PubMed  Google Scholar 

  29. Gamba JL, Martinez S, Apple J, Harrelson JM, Nunley JA. Computed tomography of axial skeletal osteoid osteomas. AJR Am J Roentgenol. 1984;142(4):769–72. https://doi.org/10.2214/ajr.142.4.769.

    Article  CAS  PubMed  Google Scholar 

  30. Harish S, Saifuddin A. Imaging features of spinal osteoid osteoma with emphasis on MRI findings. Eur Radiol. 2005;15(12):2396–403. https://doi.org/10.1007/s00330-005-2816-8.

    Article  PubMed  Google Scholar 

  31. Jordan RW, Koc T, Chapman AW, Taylor HP. Osteoid osteoma of the foot and ankle – a systematic review. Foot Ankle Surg. 2015;21(4):228–34. https://doi.org/10.1016/j.fas.2015.04.005.

    Article  PubMed  Google Scholar 

  32. Athwal GS, Pichora DR, Ellis RE, Rudan JF. A computer-assisted guidance technique for the localization and excision of osteoid osteoma. Orthopedics. 2004;27(2):195–7.

    PubMed  Google Scholar 

  33. Liu PT, Kujak JL, Roberts CC, de Chadarevian JP. The vascular groove sign: a new CT finding associated with osteoid osteomas. AJR Am J Roentgenol. 2011;196(1):168–73. https://doi.org/10.2214/AJR.10.4534.

    Article  PubMed  Google Scholar 

  34. Levine E, Neff JR. Dynamic computed tomography scanning of benign bone lesions: preliminary results. Skelet Radiol. 1983;9(4):238–45.

    Article  CAS  Google Scholar 

  35. McGrath BE, Bush CH, Nelson TE, Scarborough MT. Evaluation of suspected osteoid osteoma. Clin Orthop Relat Res. 1996;327:247–52.

    Article  Google Scholar 

  36. Assoun J, Richardi G, Railhac JJ, Baunin C, Fajadet P, Giron J, et al. Osteoid osteoma: MR imaging versus CT. Radiology. 1994;191(1):217–23. https://doi.org/10.1148/radiology.191.1.8134575.

    Article  CAS  PubMed  Google Scholar 

  37. Davies M, Cassar-Pullicino VN, Davies AM, McCall IW, Tyrrell PN. The diagnostic accuracy of MR imaging in osteoid osteoma. Skelet Radiol. 2002;31(10):559–69. https://doi.org/10.1007/s00256-002-0546-4.

    Article  Google Scholar 

  38. Zanetti M, Eberhard SM, Exner GU, von Hochstetter A, Hodler J. Magnetic resonance tomography in osteoid osteoma: more confusion than benefit?. Praxis (Bern 1994). 1997;86(11):432–6.

    CAS  Google Scholar 

  39. Liu PT, Chivers FS, Roberts CC, Schultz CJ, Beauchamp CP. Imaging of osteoid osteoma with dynamic gadolinium-enhanced MR imaging. Radiology. 2003;227(3):691–700. https://doi.org/10.1148/radiol.2273020111.

    Article  PubMed  Google Scholar 

  40. Wells RG, Miller JH, Sty JR. Scintigraphic patterns in osteoid osteoma and spondylolysis. Clin Nucl Med. 1987;12(1):39–44.

    Article  CAS  Google Scholar 

  41. Park JH, Pahk K, Kim S, Lee SH, Song SH, Choe JG. Radionuclide imaging in the diagnosis of osteoid osteoma. Oncol Lett. 2015;10(2):1131–4. https://doi.org/10.3892/ol.2015.3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Helms CA. Osteoid osteoma. The double density sign. Clin Orthop Relat Res. 1987;222:167–73.

    Google Scholar 

  43. Roach PJ, Connolly LP, Zurakowski D, Treves ST. Osteoid osteoma: comparative utility of high-resolution planar and pinhole magnification scintigraphy. Pediatr Radiol. 1996;26(3):222–5.

    Article  CAS  Google Scholar 

  44. Banzo I, Montero A, Uriarte I, Vallina NK, Hernandez A, Guede C, et al. Localization by bone SPET of osteoid osteoma in the vertebral lamina. Rev Esp Med Nucl. 1999;18(1):47–9.

    CAS  PubMed  Google Scholar 

  45. Ryan PJ, Fogelman I. Bone SPECT in osteoid osteoma of the vertebral lamina. Clin Nucl Med. 1994;19(2):144–5.

    Article  CAS  Google Scholar 

  46. Hasegawa BH, Wong KH, Iwata K, Barber WC, Hwang AB, Sakdinawat AE, et al. Dual-modality imaging of cancer with SPECT/CT. Technol Cancer Res Treat. 2002;1(6):449–58. https://doi.org/10.1177/153303460200100605.

    Article  PubMed  Google Scholar 

  47. Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85. https://doi.org/10.1007/s00259-010-1390-8.

    Article  PubMed  Google Scholar 

  48. Farid K, El-Deeb G, Caillat Vigneron N. SPECT-CT improves scintigraphic accuracy of osteoid osteoma diagnosis. Clin Nucl Med. 2010;35(3):170–1. https://doi.org/10.1097/RLU.0b013e3181cc648f.

    Article  PubMed  Google Scholar 

  49. Sharma P, Mukherjee A, Karunanithi S, Nadarajah J, Gamanagatti S, Khan SA, et al. 99mTc-methylene diphosphonate SPECT/CT as the one-stop imaging modality for the diagnosis of osteoid osteoma. Nucl Med Commun. 2014;35(8):876–83. https://doi.org/10.1097/MNM.0000000000000134.

    Article  CAS  PubMed  Google Scholar 

  50. Squier SB, Lewis JI, Accurso JM, Jain MK. (99m)Tc-methylene diphosphonate single-photon emission computed tomography/computed tomography improves the diagnostic accuracy of osteoid osteoma. Indian J Nucl Med. 2016;31(4):298–300. https://doi.org/10.4103/0972-3919.187459.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Beheshti M, Mottaghy FM, Payche F, Behrendt FFF, Van den Wyngaert T, Fogelman I, et al. (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42(11):1767–77. https://doi.org/10.1007/s00259-015-3138-y.

    Article  CAS  PubMed  Google Scholar 

  52. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51(11):1813–20. https://doi.org/10.2967/jnumed.110.082263.

    Article  PubMed  Google Scholar 

  53. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.

    PubMed  Google Scholar 

  54. Shen CT, Qiu ZL, Han TT, Luo QY. Performance of 18F-fluoride PET or PET/CT for the detection of bone metastases: a meta-analysis. Clin Nucl Med. 2015;40(2):103–10. https://doi.org/10.1097/RLU.0000000000000592.

    Article  PubMed  Google Scholar 

  55. Strobel K, Fischer DR, Tamborrini G, Kyburz D, Stumpe KD, Hesselmann RG, et al. 18F-fluoride PET/CT for detection of sacroiliitis in ankylosing spondylitis. Eur J Nucl Med Mol Imaging. 2010;37(9):1760–5. https://doi.org/10.1007/s00259-010-1464-7.

    Article  PubMed  Google Scholar 

  56. Fischer DR, Maquieira GJ, Espinosa N, Zanetti M, Hesselmann R, Johayem A, et al. Therapeutic impact of [(18)F]fluoride positron-emission tomography/computed tomography on patients with unclear foot pain. Skelet Radiol. 2010;39(10):987–97. https://doi.org/10.1007/s00256-010-0875-7.

    Article  Google Scholar 

  57. Drubach LA, Johnston PR, Newton AW, Perez-Rossello JM, Grant FD, Kleinman PK. Skeletal trauma in child abuse: detection with 18F-NaF PET. Radiology. 2010;255(1):173–81. https://doi.org/10.1148/radiol.09091368.

    Article  PubMed  Google Scholar 

  58. Dasa V, Adbel-Nabi H, Anders MJ, Mihalko WM. F-18 fluoride positron emission tomography of the hip for osteonecrosis. Clin Orthop Relat Res. 2008;466(5):1081–6. https://doi.org/10.1007/s11999-008-0219-2.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dua SG, Purandare NC, Shah S, Rangarajan V. F-18 fluoride PET/CT in the detection of radiation-induced pelvic insufficiency fractures. Clin Nucl Med. 2011;36(10):e146–9. https://doi.org/10.1097/RLU.0b013e31821a293b.

    Article  PubMed  Google Scholar 

  60. Brenner W, Vernon C, Conrad EU, Eary JF. Assessment of the metabolic activity of bone grafts with (18)F-fluoride PET. Eur J Nucl Med Mol Imaging. 2004;31(9):1291–8. https://doi.org/10.1007/s00259-004-1568-z.

    Article  CAS  PubMed  Google Scholar 

  61. Grant FD. (18)F-fluoride PET and PET/CT in children and young adults. PET Clin. 2014;9(3):287–97. https://doi.org/10.1016/j.cpet.2014.03.004.

    Article  PubMed  Google Scholar 

  62. Strobel K, Vali R. (18)F NaF PET/CT versus conventional bone scanning in the assessment of benign bone disease. PET Clin. 2012;7(3):249–61. https://doi.org/10.1016/j.cpet.2012.04.007.

    Article  PubMed  Google Scholar 

  63. Even-Sapir E, Mishani E, Flusser G, Metser U. 18F-fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med. 2007;37(6):462–9. https://doi.org/10.1053/j.semnuclmed.2007.07.002.

    Article  PubMed  Google Scholar 

  64. Lim CH, Park YH, Lee SY, Chung SK. F-18 FDG uptake in the nidus of an osteoid osteoma. Clin Nucl Med. 2007;32(8):628–30. https://doi.org/10.1097/RLU.0b013e3180a1acf3.

    Article  PubMed  Google Scholar 

  65. Imperiale A, Moser T, Ben-Sellem D, Mertz L, Gangi A, Constantinesco A. Osteoblastoma and osteoid osteoma: morphofunctional characterization by MRI and dynamic F-18 FDG PET/CT before and after radiofrequency ablation. Clin Nucl Med. 2009;34(3):184–8. https://doi.org/10.1097/RLU.0b013e3181966de6.

    Article  PubMed  Google Scholar 

  66. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology. 2001;219(3):774–7. https://doi.org/10.1148/radiology.219.3.r01ma08774.

    Article  CAS  PubMed  Google Scholar 

  67. Strobel K, Hany TF, Exner GU. PET/CT of a Brodie abscess. Clin Nucl Med. 2006;31(4):210. https://doi.org/10.1097/01.rlu.0000204125.79919.44.

    Article  PubMed  Google Scholar 

  68. Hudson TM, Hawkins IF Jr. Radiological evaluation of chondroblastoma. Radiology. 1981;139(1):1–10. https://doi.org/10.1148/radiology.139.1.7208908.

    Article  CAS  PubMed  Google Scholar 

  69. Atesok KI, Alman BA, Schemitsch EH, Peyser A, Mankin H. Osteoid osteoma and osteoblastoma. J Am Acad Orthop Surg. 2011;19(11):678–89.

    Article  Google Scholar 

  70. Moberg E. The natural course of osteoid osteoma. J Bone Joint Surg Am. 1951;33 A(1):166–70.

    Article  CAS  Google Scholar 

  71. Goto T, Shinoda Y, Okuma T, Ogura K, Tsuda Y, Yamakawa K, et al. Administration of nonsteroidal anti-inflammatory drugs accelerates spontaneous healing of osteoid osteoma. Arch Orthop Trauma Surg. 2011;131(5):619–25. https://doi.org/10.1007/s00402-010-1179-z.

    Article  PubMed  Google Scholar 

  72. Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology. 2003;229(1):171–5. https://doi.org/10.1148/radiol.2291021053.

    Article  PubMed  Google Scholar 

  73. Lindner NJ, Ozaki T, Roedl R, Gosheger G, Winkelmann W, Wortler K. Percutaneous radiofrequency ablation in osteoid osteoma. J Bone Joint Surg Br. 2001;83(3):391–6.

    Article  CAS  Google Scholar 

  74. Rosenthal DI, Springfield DS, Gebhardt MC, Rosenberg AE, Mankin HJ. Osteoid osteoma: percutaneous radio-frequency ablation. Radiology. 1995;197(2):451–4. https://doi.org/10.1148/radiology.197.2.7480692.

    Article  CAS  PubMed  Google Scholar 

  75. Sans N, Galy-Fourcade D, Assoun J, Jarlaud T, Chiavassa H, Bonnevialle P, et al. Osteoid osteoma: CT-guided percutaneous resection and follow-up in 38 patients. Radiology. 1999;212(3):687–92. https://doi.org/10.1148/radiology.212.3.r99se06687.

    Article  CAS  PubMed  Google Scholar 

  76. Woertler K, Vestring T, Boettner F, Winkelmann W, Heindel W, Lindner N. Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol. 2001;12(6):717–22.

    Article  CAS  Google Scholar 

  77. Kostrzewa M, Diezler P, Michaely H, Rathmann N, Attenberger UI, Schoenberg SO, et al. Microwave ablation of osteoid osteomas using dynamic MR imaging for early treatment assessment: preliminary experience. J Vasc Interv Radiol. 2014;25(1):106–11. https://doi.org/10.1016/j.jvir.2013.09.009.

    Article  PubMed  Google Scholar 

  78. Napoli A, Bazzocchi A, Scipione R, Anzidei M, Saba L, Ghanouni P, et al. Noninvasive therapy for osteoid osteoma: a prospective developmental study with MR imaging-guided high-intensity focused ultrasound. Radiology. 2017;285(1):186–96. https://doi.org/10.1148/radiol.2017162680.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Figure 12: Image courtesy of Dr. Alessio Imperiale, Nuclear Medicine, University Hospital Strasbourg, France.

Figure 13: Image courtesy of Dr. Joachim Müller, Nuclear Medicine, Cantonal Hospital St. Gallen, Switzerland.

Figures 7 and 9: Image design courtesy of Lutz Lehmann, Luzerner Kantonsspital, Luzern, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in a significant way to the content and revision of this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Klaus Strobel.

Ethics declarations

Conflicts of interest

None.

Ethical approval and consent to participate

Not applicable.

Consent to publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhure, U., Roos, J.E. & Strobel, K. Osteoid osteoma: multimodality imaging with focus on hybrid imaging. Eur J Nucl Med Mol Imaging 46, 1019–1036 (2019). https://doi.org/10.1007/s00259-018-4181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4181-2

Keywords

Navigation