Skip to main content

Advertisement

Log in

New prostate MRI techniques and sequences

  • Special Section: Prostate cancer
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Prostate MRI has seen increasing interest in recent years and has led to the development of new MRI techniques and sequences to improve prostate cancer (PCa) diagnosis which are reviewed in this article. Numerous studies have focused on improving image quality (segmented DWI) and faster acquisition (compressed sensing, k-t-SENSE, PROPELLER). An increasing number of studies have developed new quantitative and computer-aided diagnosis methods including artificial intelligence (PROSTATEx challenge) that mitigate the subjective nature of mpMRI interpretation. MR fingerprinting allows rapid, simultaneous generation of quantitative maps of multiple physical properties (T1, T2), where PCa are characterized by lower T1 and T2 values. New techniques like luminal water imaging (LWI), restriction spectrum imaging (RSI), VERDICT and hybrid multi-dimensional MRI (HM-MRI) have been developed for microstructure imaging, which provide information similar to histology. The distinct MR properties of tissue components and their change with the presence of cancer is used to diagnose prostate cancer. LWI is a T2-based imaging technique where long T2-component corresponding to luminal water is reduced in PCa. RSI and VERDICT are diffusion-based techniques where PCa is characterized by increased signal from intra-cellular restricted water and increased intracellular volume fraction, respectively, due to increased cellularity. VERDICT also reveal loss of extracellular-extravascular space in PCa due to loss of glandular structure. HM-MRI measures volumes of prostate tissue components, where PCa has reduced lumen and stromal and increased epithelium volume similar to results shown in histology. Similarly, molecular imaging using hyperpolarized 13C imaging has been utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians. 2019; 69(1):7–34.

  2. Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. European Urology. 2016; 69(1):16-40.

    Article  PubMed  Google Scholar 

  3. Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. European Urology. 2019; 76(3):340–51.

  4. Borofsky S, George AK, Gaur S, et al. What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate. Radiology. 2018; 286(1):186-95.

    Article  PubMed  Google Scholar 

  5. Fütterer JJ, Briganti A, De Visschere P, et al. Can Clinically Significant Prostate Cancer Be Detected with Multiparametric Magnetic Resonance Imaging? A Systematic Review of the Literature. European Urology. 2015; 68(6):1045-53.

    Article  PubMed  Google Scholar 

  6. Niaf E, Lartizien C, Bratan F, et al. Prostate Focal Peripheral Zone Lesions: Characterization at Multiparametric MR Imaging—Influence of a Computer-aided Diagnosis System. Radiology. 2014; 271(3):761-9.

    Article  PubMed  Google Scholar 

  7. Storås TH, Gjesdal K-I, Gadmar ØB, Geitung JT, Kløw N-E. Prostate magnetic resonance imaging: Multiexponential T2 decay in prostate tissue. Journal of Magnetic Resonance Imaging. 2008; 28(5):1166-72.

    Article  PubMed  Google Scholar 

  8. Kjaer L, Thomsen C, Iversen P, Henriksen O. In vivo estimation of relaxation processes in benign hyperplasia and carcinoma of the prostate gland by magnetic resonance imaging. Magnetic resonance imaging. 1987; 5(1):23-30.

    Article  CAS  PubMed  Google Scholar 

  9. Schoeniger JS, Aiken N, Hsu E, Blackband SJ. Relaxation-Time and Diffusion NMR Microscopy of Single Neurons. Journal of Magnetic Resonance, Series B. 1994; 103(3):261-73.

    Article  CAS  Google Scholar 

  10. Sabouri S, Chang SD, Savdie R, et al. Luminal Water Imaging: A New MR Imaging T2 Mapping Technique for Prostate Cancer Diagnosis. Radiology. 2017; 284(2):451-9.

    Article  PubMed  Google Scholar 

  11. Sabouri S, Fazli L, Chang SD, et al. MR measurement of luminal water in prostate gland: Quantitative correlation between MRI and histology. Journal of Magnetic Resonance Imaging. 2017; 46(3):861-9.

    Article  PubMed  Google Scholar 

  12. Langer DL, van der Kwast TH, Evans AJ, et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology. 2010; 255(2):485-94.

    Article  PubMed  Google Scholar 

  13. Chatterjee A, Watson G, Myint E, Sved P, McEntee M, Bourne R. Changes in Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics. Radiology. 2015; 277(3):751-62.

    Article  PubMed  Google Scholar 

  14. Sabouri S, Chang SD, Goldenberg SL, et al. Comparing diagnostic accuracy of luminal water imaging with diffusion-weighted and dynamic contrast-enhanced MRI in prostate cancer: A quantitative MRI study. NMR in Biomedicine. 2019; 32(2):e4048.

    Article  PubMed  Google Scholar 

  15. Carlin D, Orton MR, Collins D, deSouza NM. Probing structure of normal and malignant prostate tissue before and after radiation therapy with luminal water fraction and diffusion-weighted MRI. Journal of Magnetic Resonance Imaging. 0(0).

  16. Chan RW, Lau AZ, Detzler G, Thayalasuthan V, Nam RK, Haider MA. Evaluating the accuracy of multicomponent T2 parameters for luminal water imaging of the prostate with acceleration using inner-volume 3D GRASE. Magnetic Resonance in Medicine. 2019; 81(1):466-76.

    Article  PubMed  Google Scholar 

  17. Devine W, Giganti F, Johnston EW, et al. Simplified Luminal Water Imaging for the Detection of Prostate Cancer From Multiecho T2 MR Images. Journal of Magnetic Resonance Imaging. 2019; 50(3):910-7.

    Article  PubMed  Google Scholar 

  18. White NS, Leergaard TB, D'Arceuil H, Bjaalie JG, Dale AM. Probing tissue microstructure with restriction spectrum imaging: Histological and theoretical validation. Human Brain Mapping. 2013; 34(2):327-46.

    Article  PubMed  Google Scholar 

  19. White NS, McDonald CR, Farid N, et al. Diffusion-Weighted Imaging in Cancer: Physical Foundations and Applications of Restriction Spectrum Imaging. Cancer Research. 2014; 74(17):4638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCammack KC, Kane CJ, Parsons JK, et al. In vivo prostate cancer detection and grading using restriction spectrum imaging-MRI. Prostate Cancer and Prostatic Diseases. 2016; 19(2):168-73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liss MA, White NS, Parsons JK, et al. MRI-Derived Restriction Spectrum Imaging Cellularity Index is Associated with High Grade Prostate Cancer on Radical Prostatectomy Specimens. Frontiers in Oncology. 2015; 5(30).

  22. Yamin G, Schenker-Ahmed NM, Shabaik A, et al. Voxel Level Radiologic–Pathologic Validation of Restriction Spectrum Imaging Cellularity Index with Gleason Grade in Prostate Cancer. Clinical Cancer Research. 2016; 22(11):2668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McCammack KC, Schenker-Ahmed NM, White NS, et al. Restriction spectrum imaging improves MRI-based prostate cancer detection. Abdom Radiol. 2016; 41(5):946-53.

    Article  Google Scholar 

  24. Felker ER, Raman SS, Shakeri S, et al. Utility of Restriction Spectrum Imaging Among Men Undergoing First-Time Biopsy for Suspected Prostate Cancer. American Journal of Roentgenology. 2019; 213(2):365-70.

    Article  PubMed  Google Scholar 

  25. Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer research. 2014; 74(7):1902-12.

    Article  CAS  PubMed  Google Scholar 

  26. Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive Quantification of Solid Tumor Microstructure Using VERDICT MRI. Cancer Research. 2014; 74(7):1902.

    Article  CAS  PubMed  Google Scholar 

  27. Panagiotaki E, Chan RW, Dikaios N, et al. Microstructural Characterization of Normal and Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours Magnetic Resonance Imaging. Investigative radiology. 2015; 50(4):218-27.

    Article  CAS  PubMed  Google Scholar 

  28. Bailey C, Bourne RM, Siow B, et al. VERDICT MRI validation in fresh and fixed prostate specimens using patient-specific moulds for histological and MR alignment. NMR in Biomedicine. 2019; 32(5):e4073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Alexander DC. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magnetic Resonance in Medicine. 2008; 60(2):439-48.

    Article  PubMed  Google Scholar 

  30. Bonet-Carne E, Johnston E, Daducci A, et al. VERDICT-AMICO: Ultrafast fitting algorithm for non-invasive prostate microstructure characterization. NMR in Biomedicine. 2019; 32(1):e4019.

    Article  PubMed  Google Scholar 

  31. Johnston E, Pye H, Bonet-Carne E, et al. INNOVATE: A prospective cohort study combining serum and urinary biomarkers with novel diffusion-weighted magnetic resonance imaging for the prediction and characterization of prostate cancer. BMC Cancer. 2016; 16(1):816.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Johnston EW, Bonet-Carne E, Ferizi U, et al. VERDICT MRI for Prostate Cancer: Intracellular Volume Fraction versus Apparent Diffusion Coefficient. Radiology. 2019; 291(2):391-7.

    Article  PubMed  Google Scholar 

  33. Bourne RM, Kurniawan N, Cowin G, et al. Microscopic diffusivity compartmentation in formalin-fixed prostate tissue. Magn Reson Med. 2012; 68(2):614-20.

    Article  PubMed  Google Scholar 

  34. Does MD, Gore JC. Compartmental study of diffusion and relaxation measured in vivo in normal and ischemic rat brain and trigeminal nerve. Magnetic Resonance in Medicine. 2000; 43(6):837-44.

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Peng Y, Medved M, et al. Hybrid multidimensional T2 and diffusion‐weighted MRI for prostate cancer detection. Journal of Magnetic Resonance Imaging. 2014; 39(4):781-8.

    Article  PubMed  Google Scholar 

  36. Sadinski M, Karczmar G, Peng Y, et al. Pilot Study of the Use of Hybrid Multidimensional T2-Weighted Imaging–DWI for the Diagnosis of Prostate Cancer and Evaluation of Gleason Score. American Journal of Roentgenology. 2016; 207(3):592-8.

    Article  PubMed  Google Scholar 

  37. Chatterjee A, Bourne R, Wang S, et al. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018; 287(3):864-72.

    Article  PubMed  Google Scholar 

  38. Chatterjee A, Mercado C, Bourne RM, et al. Validation of prostate tissue composition measurement using Hybrid Multidimensional MRI: Correlation with quantitative histology. Proc Intl Soc Mag Reson Med (ISMRM). Montreal, Canada 2019; 0986.

  39. Chatterjee A, Lee G, Dietz D, Oto A, Karczmar G. Cross vendor validation of Hybrid Multidimensional MRI in the non-invasive measurement of prostate tissue composition. Society of Abdominal Imaging (SAR) Annual Scientific Meeting. Maui, USA. 2020; 3285826.

  40. Chatterjee A, Harmath C, Engelmann R, et al. Prospective Validation of an Automated Hybrid Multi-dimensional MR Imaging-Based Tool to Identify Areas for Prostate Cancer Biopsy: Preliminary results. Society of Abdominal Imaging (SAR) Annual Scientific Meeting Maui, USA. 2020; 3281119.

  41. Chatterjee A, Gallan AJ, He D, et al. Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer. Abdom Radiol. 2019; 44(6):2233-43.

    Article  Google Scholar 

  42. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013; 495(7440):187-92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu AC, Badve C, Ponsky LE, et al. Development of a Combined MR Fingerprinting and Diffusion Examination for Prostate Cancer. Radiology. 2017; 283(3):729-38.

    Article  PubMed  Google Scholar 

  44. Panda A, O'Connor G, Lo WC, et al. Targeted Biopsy Validation of Peripheral Zone Prostate Cancer Characterization With Magnetic Resonance Fingerprinting and Diffusion Mapping. Investigative Radiology. 2019; 54(8):485-93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Panda A, Obmann VC, Lo W-C, et al. MR Fingerprinting and ADC Mapping for Characterization of Lesions in the Transition Zone of the Prostate Gland. Radiology. 2019; 292(3):685-94.

    Article  PubMed  Google Scholar 

  46. Atkinson D, Counsell S, Hajnal JV, Batchelor PG, Hill DLG, Larkman DJ. Nonlinear phase correction of navigated multi-coil diffusion images. Magnetic Resonance in Medicine. 2006; 56(5):1135-9.

    Article  PubMed  Google Scholar 

  47. Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magnetic Resonance in Medicine. 2009; 62(2):468-75.

    Article  PubMed  Google Scholar 

  48. Fedorov A, Tuncali K, Panych LP, et al. Segmented diffusion-weighted imaging of the prostate: Application to transperineal in-bore 3T MR image-guided targeted biopsy. Magnetic Resonance Imaging. 2016; 34(8):1146-54.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Thian YL, Xie W, Porter DA, Weileng Ang B. Readout-segmented Echo-planar Imaging for Diffusion-weighted Imaging in the Pelvis at 3T—A Feasibility Study. Academic Radiology. 2014; 21(4):531-7.

    Article  PubMed  Google Scholar 

  50. Aksit Ciris P, Chiou JG, Glazer DI, et al. Accelerated Segmented Diffusion-Weighted Prostate Imaging for Higher Resolution, Higher Geometric Fidelity, and Multi-b Perfusion Estimation. Invest Radiol. 2019; 54(4):238-46.

    Article  PubMed  Google Scholar 

  51. Attenberger UI, Rathmann N, Sertdemir M, et al. Small Field-of-view single-shot EPI-DWI of the prostate: Evaluation of spatially-tailored two-dimensional radiofrequency excitation pulses. Z Med Phys. 2016; 26(2):168-76.

    Article  PubMed  Google Scholar 

  52. Czarniecki M, Caglic I, Grist JT, et al. Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork. Eur J Radiol. 2018; 102:213-9.

    Article  PubMed  Google Scholar 

  53. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine. 2007; 58(6):1182-95.

    Article  PubMed  Google Scholar 

  54. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magnetic Resonance in Medicine. 2003; 50(5):1031-42.

    Article  PubMed  Google Scholar 

  55. Winkel DJ, Heye TJ, Benz MR, et al. Compressed Sensing Radial Sampling MRI of Prostate Perfusion: Utility for Detection of Prostate Cancer. Radiology. 2019; 290(3):702-8.

    Article  PubMed  Google Scholar 

  56. Rosenkrantz AB, Geppert C, Grimm R, et al. Dynamic contrast-enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel imaging, and continuous golden-angle radial sampling: Preliminary experience. Journal of Magnetic Resonance Imaging. 2015; 41(5):1365-73.

    Article  PubMed  Google Scholar 

  57. Liu W, Turkbey B, Sénégas J, et al. Accelerated T2 mapping for characterization of prostate cancer. Magnetic Resonance in Medicine. 2011; 65(5):1400-6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chatterjee A, Devaraj A, Matthew M, et al. Performance of T2 maps in the detection of prostate cancer. Academic Radiology. 2019; 26(1):15-21.

    Article  PubMed  Google Scholar 

  59. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-weighted MR Images: Relationship with Increasing Cumulative Dose of a Gadolinium-based Contrast Material. Radiology. 2014; 270(3):834-41.

    Article  PubMed  Google Scholar 

  60. Robert P, Frenzel T, Factor C, et al. Methodological Aspects for Preclinical Evaluation of Gadolinium Presence in Brain Tissue: Critical Appraisal and Suggestions for Harmonization—A Joint Initiative. Investigative Radiology. 2018; 53(9):499-517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scialpi M, Prosperi E, D'Andrea A, et al. Biparametric versus Multiparametric MRI with Non-endorectal Coil at 3T in the Detection and Localization of Prostate Cancer. Anticancer Res. 2017; 37(3):1263-71.

    Article  PubMed  Google Scholar 

  62. He D, Chatterjee A, Fan X, et al. Feasibility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Low-Dose Gadolinium: Comparative Performance With Standard Dose in Prostate Cancer Diagnosis. Investigative Radiology. 2018; 53(10):609-15.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chatterjee A, He D, Fan X, et al. Performance of ultrafast DCE-MRI for diagnosis of prostate cancer. Academic Radiology. 2018; 25(3):349-58.

    Article  PubMed  Google Scholar 

  64. Turco S, Lavini C, Heijmink S, Barentsz J, Wijkstra H, Mischi M. Evaluation of Dispersion MRI for Improved Prostate Cancer Diagnosis in a Multicenter Study. American Journal of Roentgenology. 2018; 211(5):W242-W51.

    Article  PubMed  Google Scholar 

  65. Sun C, Chatterjee A, Yousuf A, et al. Comparison of T2-Weighted Imaging, DWI, and Dynamic Contrast-Enhanced MRI for Calculation of Prostate Cancer Index Lesion Volume: Correlation With Whole-Mount Pathology. American Journal of Roentgenology. 2018; 212(2):351-6.

    Article  PubMed  Google Scholar 

  66. Chatterjee A, Oto A. Future Perspectives in Multiparametric Prostate MR Imaging. Magnetic Resonance Imaging Clinics of North America. 2019; 27(1):117-30.

    Article  PubMed  Google Scholar 

  67. Nelson SJ, Kurhanewicz J, Vigneron DB, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1–13C]pyruvate. Sci Transl Med. 2013; 5(198):198ra08-ra08.

  68. Armato SG, 3rd, Huisman H, Drukker K, et al. PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. Journal of medical imaging (Bellingham, Wash). 2018; 5(4):044501.

    PubMed Central  Google Scholar 

  69. Chatterjee A, Nolan P, Sun C, et al. Effect of Echo Times on Prostate Cancer Detection on T2-Weighted Images. Academic Radiology. 2020.

  70. Peng Y, Jiang Y, Antic T, et al. Apparent Diffusion Coefficient for Prostate Cancer Imaging: Impact of b Values. American Journal of Roentgenology. 2014; 202(3):W247-W53.

    Article  PubMed  Google Scholar 

  71. Othman AE, Falkner F, Weiss J, et al. Effect of Temporal Resolution on Diagnostic Performance of Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Prostate. Invest Radiol. 2016; 51(5):290-6.

    Article  PubMed  Google Scholar 

  72. Jambor I. Optimization of prostate MRI acquisition and post-processing protocol: a pictorial review with access to acquisition protocols. Acta Radiol Open. 2017; 6(12):2058460117745574-.

  73. Caglic I, Barrett T. Optimising prostate mpMRI: prepare for success. Clinical Radiology. 2019; 74(11):831-40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Eleftheria Panagiotaki (University College London), Dr. Shirin Sabouri, Dr. Piotr Kozlowski (University of British Columbia), Dr. Tyler Siebert, Dr. Nathan White, Dr. Anders Dale (University of California San Diego), Dr. Andrey Fedorov, Dr. Stephan Maier (Harvard University) and Dr. Vikas Gulani (University of Michigan) for our interesting conversations regarding their techniques and for providing figures for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aytekin Oto.

Ethics declarations

Conflict of interest

Dr Carla Harmath has no disclosures. Dr. Aytekin Oto has the following disclosures. Research Grant, Koninklijke Philips NV Research Grant, Guerbet SA Research Grant, Profound Medical Inc. Medical Advisory Board, Profound Medical Inc Speaker, Bracco Group. Dr. Aritrick Chatterjee and Dr. Aytekin Oto hold equity in QMIS, LLC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Harmath, C. & Oto, A. New prostate MRI techniques and sequences. Abdom Radiol 45, 4052–4062 (2020). https://doi.org/10.1007/s00261-020-02504-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02504-8

Keywords

Navigation