Skip to main content
Log in

Effects of thermal stress on tumor antigenicity and recognition by immune effector cells

  • Symposium in Writing
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The primary rationale for the application of clinical hyperthermia in the therapy of cancer is based on the direct cytotoxic effect of heat and the radio-chemosensitization of tumor cells. More recently, additional attention is given to the observation that heat and heat-shock proteins can activate the host’s immune system. The expression of heat-shock genes and proteins provides an adaptive mechanism for stress tolerance, allowing cells to survive non-physiologic conditions. However, the same adaptive mechanism can ultimately favor malignant transformation by interfering with pathways that regulate cell growth and apoptosis. Cytoprotection and thermotolerance raised the concern that heat-treated tumor cells might also be resistant to attack by immune effector mechanisms. Many studies, including those from our group, address this concern and document that heat-exposure, although transiently modulating sensitivity to CTL, do not hinder CTL attack. Moreover, there are promising reports of heat-related upregulation of NK-activating ligands, rendering those tumors which have lost MHC class I molecules target for NK cell attack. Heat-induced cytoprotection, therefore, does not necessarily extend protection from cytotoxic immune mechanisms. When interpreting the effects of heat, it is important to keep in mind that thermal effects on cell physiology are strongly dependent on the thermal dose, which is a function of the magnitude of change in temperature and the duration of heat exposure. The thermal dose required to induce cell death in vitro strongly varies from cell type to cell type and depends on microenvironmental factors (Dewey 1994). Therefore, to dissect the immunological behaviour of a given tumor and its micro-environment at different thermal doses, it is essential to characterize the thermosensitivity of every single tumor type and assess the proportion of cells surviving a given heat treatment. In this review, we summarize the pleiotropic effects that heat exposure has on tumor cells. In particular, we focus on the effects of heat on the antigen presentation of tumor cells and their susceptibility to immune effector mechanisms. We emphasize that the response to thermal stress is not a one-time point event, but rather a time period starting with the heat exposure and extending over several days of recovery. In addition, the response of tumor cells and their susceptibility to immune effector cells is strongly dependent on the model system, on the magnitude and duration of the thermal stress and on the time of recovery after heat exposure. Consideration of these aspects might help to explain some of the conflicting results that are reported in the field of thermal stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Ag:

Antigen

APC:

Antigen-presenting cell

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cells

Hsc70:

Constitutively expressed heat-shock protein cognate 70 (Mr 73 kD)

HSP:

Heat-shock protein

Hsp70:

Inducible heat-shock protein 70 (Mr 72 kD)

NK:

Natural killer cells

TCR:

T cell receptor

TRAIL:

TNF-related apoptosis-inducing ligand

References

  1. Dewey WC (1994) Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 10:457

    Article  PubMed  CAS  Google Scholar 

  2. Overgaard J, Gonzalez Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O, Bentzen SM (1995) Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European society for hyperthermic oncology. Lancet 345:540

    Article  PubMed  CAS  Google Scholar 

  3. van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355:1119

    Article  PubMed  Google Scholar 

  4. Kraybill WG, Olenki T, Evans SS, Ostberg JR, O’Leary KA, Gibbs JF, Repasky EA (2002) A phase I study of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumours: correlation with mouse models. Int J Hyperthermia 18:253

    Article  PubMed  CAS  Google Scholar 

  5. Bull JM (1984) An update on the anticancer effects of a combination of chemotherapy and hyperthermia. Cancer Res 44:4853s

    PubMed  CAS  Google Scholar 

  6. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267

    Article  PubMed  CAS  Google Scholar 

  7. Kampinga HH, Dikomey E (2001) Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol 77:399

    Article  PubMed  CAS  Google Scholar 

  8. Kampinga HH, Dynlacht JR, Dikomey E (2004) Mechanism of radiosensitization by hyperthermia (> or = 43 degrees C) as derived from studies with DNA repair defective mutant cell lines. Int J Hyperthermia 20:131

    Article  PubMed  CAS  Google Scholar 

  9. Roti Roti JL, Kampinga HH, Malyapa RS, Wright WD, vanderWaal RP, Xu M (1998) Nuclear matrix as a target for hyperthermic killing of cancer cells. Cell Stress Chaperones 3:245

    Article  PubMed  CAS  Google Scholar 

  10. Mivechi NF, Dewey WC (1985) DNA polymerase alpha and beta activities during the cell cycle and their role in heat radiosensitization in Chinese hamster ovary cells. Radiat Res 103:337

    Article  PubMed  CAS  Google Scholar 

  11. Armour EP, McEachern D, Wang Z, Corry PM, Martinez A (1993) Sensitivity of human cells to mild hyperthermia. Cancer Res 53:2740

    PubMed  CAS  Google Scholar 

  12. Koutcher JA, Barnett D, Kornblith AB, Cowburn D, Brady TJ, Gerweck LE (1990) Relationship of changes in pH and energy status to hypoxic cell fraction and hyperthermia sensitivity. Int J Radiat Oncol Biol Phys 18:1429

    PubMed  CAS  Google Scholar 

  13. Li GC, Mivechi NF, Weitzel G (1995) Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperthermia 11:459

    Article  PubMed  CAS  Google Scholar 

  14. Atanackovic D, Nierhaus A, Neumeier M, Hossfeld DK, Hegewisch-Becker S (2002) 41.8 degrees C whole body hyperthermia as an adjunct to chemotherapy induces prolonged T cell activation in patients with various malignant diseases. Cancer Immunol Immunother 51:603

    Article  PubMed  CAS  Google Scholar 

  15. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158:4341

    PubMed  CAS  Google Scholar 

  16. Milani V, Frankenberger B, Heinz O, Brandl A, Ruhland S, Issels RD, Noessner E (2005) Melanoma-associated antigen tyrosinase but not Melan-A/MART-1 expression and presentation dissociate during the heat shock response. Int Immunol 17:257

    Article  PubMed  CAS  Google Scholar 

  17. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380

    Article  PubMed  CAS  Google Scholar 

  18. Marincola FM, Jaffee EM, Hicklin DJ, S Ferrone (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181

    Article  PubMed  CAS  Google Scholar 

  19. Davies CD, Western A, Lindmo T, Moan J (1986) Changes in antigen expression on human FME melanoma cells after exposure to photoactivated hematoporphyrin derivative. Cancer Res 46:6068

    PubMed  CAS  Google Scholar 

  20. Davies CD, Lindmo T (1990) Hyperthermia-induced shedding and masking of melanoma-associated antigen. Int J Hyperthermia 6:1053

    PubMed  CAS  Google Scholar 

  21. Pepin E, Villiers CL, Gabert FM, Serra VA, Marche PN, Colomb MG (1996) Heat shock increases antigenic peptide generation but decreases antigen presentation. Eur J Immunol 26:2939

    Article  PubMed  CAS  Google Scholar 

  22. Kuperberg G, Ellis J, Marcinkiewicz J, Chain BM (1991) Temperature-induced stress abrogates co-stimulatory function in antigen-presenting cells. Eur J Immunol 21:2791

    Article  PubMed  CAS  Google Scholar 

  23. Mise K, Kan N, Okino T, Nakanishi M, Satoh K, Teramura Y, Yamasaki S, Ohgaki K, Tobe T (1990) Effect of heat treatment on tumor cells and antitumor effector cells. Cancer Res 50:6199

    PubMed  CAS  Google Scholar 

  24. Wells AD, Malkovsky M (2000) Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21:129

    Article  PubMed  CAS  Google Scholar 

  25. Michalek MT, Benacerraf B, Rock KL (1992) The class II MHC-restricted presentation of endogenously synthesized ovalbumin displays clonal variation, requires endosomal/lysosomal processing, and is up-regulated by heat shock. J Immunol 148:1016

    PubMed  CAS  Google Scholar 

  26. Ito A, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (2001) Augmentation of MHC class I antigen presentation via heat shock protein expression by hyperthermia. Cancer Immunol Immunother 50:515

    Article  PubMed  CAS  Google Scholar 

  27. Menoret A, Patry Y, Burg C, Le Pendu J (1995) Co-segregation of tumor immunogenicity with expression of inducible but not constitutive hsp70 in rat colon carcinomas. J Immunol 155:740

    PubMed  CAS  Google Scholar 

  28. Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 4:581

    Article  PubMed  CAS  Google Scholar 

  29. Clark PR, Menoret A (2001) The inducible Hsp70 as a marker of tumor immunogenicity. Cell Stress Chaperones 6:121

    Article  PubMed  CAS  Google Scholar 

  30. Dressel R, Lubbers M, Walter L, Herr W, Gunther E (1999) Enhanced susceptibility to cytotoxic T lymphocytes without increase of MHC class I antigen expression after conditional overexpression of heat shock protein 70 in target cells. Eur J Immunol 29:3925

    Article  PubMed  CAS  Google Scholar 

  31. Dressel R, Elsner L, Quentin T, Walter L, Gunther E (2000) Heat shock protein 70 is able to prevent heat shock-induced resistance of target cells to CTL. J Immunol 164:2362

    PubMed  CAS  Google Scholar 

  32. Overgaard J, Suit HD (1979) Time-temperature relationship th hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res 39:3248

    PubMed  CAS  Google Scholar 

  33. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151

    Article  PubMed  CAS  Google Scholar 

  34. Blom DJ, De Waard-Siebinga I, Apte RS, Luyten GP, Niederkorn JY, Jager MJ (1997) Effect of hyperthermia on expression of histocompatibility antigens and heat-shock protein molecules on three human ocular melanoma cell lines. Melanoma Res 7:103

    Article  PubMed  CAS  Google Scholar 

  35. Wells AD, Rai SK, Salvato MS, Band H, Malkovsky M (1998) Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int Immunol 10:609

    Article  PubMed  CAS  Google Scholar 

  36. Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S, Hengartner H, Golstein P (1994) Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265:528

    Article  PubMed  CAS  Google Scholar 

  37. Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293

    Article  PubMed  CAS  Google Scholar 

  38. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735

    Article  PubMed  CAS  Google Scholar 

  39. Bossi G, Trambas C, Booth S, Clark R, Stinchcombe J, Griffiths GM (2002) The secretory synapse: the secrets of a serial killer. Immunol Rev 189:152

    Article  PubMed  CAS  Google Scholar 

  40. Jackson KM, DeLeon M, Sistonen L, Verret CR (2000) Heat-shocked A20 lymphoma cells fail to induce degranulation of cytotoxic T lymphocytes: possible mechanism of resistance. Cell Immunol 203:12

    Article  PubMed  CAS  Google Scholar 

  41. Lee HM, Timme TL, Thompson TC (2000) Resistance to lysis by cytotoxic T cells: a dominant effect in metastatic mouse prostate cancer cells. Cancer Res 60:1927

    PubMed  CAS  Google Scholar 

  42. Li GC, Li LG, Liu YK, Mak JY, Chen LL, Lee WM (1991) Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene. Proc Natl Acad Sci USA 88:1681

    Article  PubMed  CAS  Google Scholar 

  43. Li GC, Werb Z (1982) Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci USA 79:3218

    Article  PubMed  CAS  Google Scholar 

  44. Nollen EA, Brunsting JF, Roelofsen H, Weber LA, Kampinga HH (1999) In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 19:2069

    PubMed  CAS  Google Scholar 

  45. Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. Embo J 17:6124

    Article  PubMed  CAS  Google Scholar 

  46. Creagh EM, Carmody RJ, Cotter TG (2000) Heat shock protein 70 inhibits caspase-dependent and -independent apoptosis in Jurkat T cells. Exp Cell Res 257:58

    Article  PubMed  CAS  Google Scholar 

  47. Creagh EM, Sheehan D, Cotter TG (2000) Heat shock proteins–modulators of apoptosis in tumour cells. Leukemia 14:1161

    Article  PubMed  CAS  Google Scholar 

  48. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469

    Article  PubMed  CAS  Google Scholar 

  49. Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146

    Article  PubMed  CAS  Google Scholar 

  50. Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Hoyer-Hansen M, Weber E, Multhoff G, Rohde M, Jaattela M (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425

    Article  PubMed  CAS  Google Scholar 

  51. Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 97:7871

    Article  PubMed  CAS  Google Scholar 

  52. Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564

    Article  PubMed  CAS  Google Scholar 

  53. Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G (2003) Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 278:41173

    Article  PubMed  CAS  Google Scholar 

  54. Jaattela M (1990) Effects of heat shock on cytolysis mediated by NK cells, LAK cells, activated monocytes and TNFs alpha and beta. Scand J Immunol 31:175

    Article  PubMed  CAS  Google Scholar 

  55. Gromkowski SH, Yagi J, Janeway Jr CA (1989) Elevated temperature regulates tumor necrosis factor-mediated immune killing. Eur J Immunol 19:1709

    Article  PubMed  CAS  Google Scholar 

  56. Jaattela M, Saksela K, Saksela E (1989) Heat shock protects WEHI-164 target cells from the cytolysis by tumor necrosis factors alpha and beta. Eur J Immunol 19:1413

    Article  PubMed  CAS  Google Scholar 

  57. Cristau B, Schafer PH, Pierce SK (1994) Heat shock enhances antigen processing and accelerates the formation of compact class II alpha beta dimers. J Immunol 152:1546

    PubMed  CAS  Google Scholar 

  58. Kusher DI, Ware CF, Gooding LR (1990) Induction of the heat shock response protects cells from lysis by tumor necrosis factor. J Immunol 145:2925

    PubMed  CAS  Google Scholar 

  59. Sugawara S, Nowicki M, Xie S, Song HJ, Dennert G (1990) Effects of stress on lysability of tumor targets by cytotoxic T cells and tumor necrosis factor. J Immunol 145:1991

    PubMed  CAS  Google Scholar 

  60. Jaattela M, Wissing D (1993) Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J Exp Med 177:231

    Article  PubMed  CAS  Google Scholar 

  61. Jaattela M (1995) Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 60:689

    Article  PubMed  CAS  Google Scholar 

  62. Geginat G, Heine L, Gunther E (1993) Effect of heat shock on susceptibility of normal lymphoblasts and of a heat shock protein 70-defective tumour cell line to cytotoxic T lymphocytes in vitro. Scand J Immunol 37:314

    Article  PubMed  CAS  Google Scholar 

  63. Raulet DH, Held W (1995) Natural killer cell receptors: the offs and ons of NK cell recognition. Cell 82:697

    Article  PubMed  CAS  Google Scholar 

  64. Trinchieri G (1995) Natural killer cells wear different hats: effector cells of innate resistance and regulatory cells of adaptive immunity and of hematopoiesis. Semin Immunol 7:83

    Article  PubMed  CAS  Google Scholar 

  65. Ljunggren HG, Karre K (1990) In search of the ’missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237

    Article  PubMed  CAS  Google Scholar 

  66. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737

    Article  PubMed  CAS  Google Scholar 

  67. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727

    Article  PubMed  CAS  Google Scholar 

  68. Multhoff G, Botzler C, Wiesnet M, Eissner G, Issels R (1995) CD3- large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 86:1374

    PubMed  CAS  Google Scholar 

  69. Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W, Issels RD (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272

    Article  PubMed  CAS  Google Scholar 

  70. Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167

    Article  PubMed  CAS  Google Scholar 

  71. Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27:1627

    Article  PubMed  CAS  Google Scholar 

  72. Botzler C, Issels R, Multhoff G (1996) Heat-shock protein 72 cell-surface expression on human lung carcinoma cells in associated with an increased sensitivity to lysis mediated by adherent natural killer cells. Cancer Immunol Immunother 43:226

    Article  PubMed  CAS  Google Scholar 

  73. Botzler C, Ellwart J, Gunther W, Eissner G, Multhoff G (1999) Synergistic effects of heat and ET-18-OCH3 on membrane expression of hsp70 and lysis of leukemic K562 cells. Exp Hematol 27:470

    Article  PubMed  CAS  Google Scholar 

  74. Botzler C, Kolb HJ, Issels RD, Multhoff G (1996) Noncytotoxic alkyl-lysophospholipid treatment increases sensitivity of leukemic K562 cells to lysis by natural killer (NK) cells. Int J Cancer 65:633

    Article  PubMed  CAS  Google Scholar 

  75. Michaelsson J, Teixeira de Matos C, Achour A, Lanier LL, Karre K, Soderstrom K (2002) A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196:1403

    Article  PubMed  CAS  Google Scholar 

  76. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185

    Article  PubMed  CAS  Google Scholar 

  77. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395

    Article  PubMed  CAS  Google Scholar 

  78. Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M, Mazzaferro V, Coppa J, Srivastava PK, Parmiani G (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53:227

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Milani.

Additional information

This article forms part of the Symposium in Writing "Thermal stress-related modulation of tumor cell physiology and immune responses", edited by Elfriede Noessner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milani, V., Noessner, E. Effects of thermal stress on tumor antigenicity and recognition by immune effector cells. Cancer Immunol Immunother 55, 312–319 (2006). https://doi.org/10.1007/s00262-005-0052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0052-3

Keywords

Navigation