Skip to main content

Advertisement

Log in

Tumor-derived death receptor 6 modulates dendritic cell development

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6−/− mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-γ. The effects of DR6 are mostly amended when these immature DC are matured with IL-1β/TNF-α, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  2. Pulendran B, Palucka K, Banchereau J (2001) Sensing pathogens and tuning immune responses. Science 293:253–256

    Article  PubMed  CAS  Google Scholar 

  3. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848

    Article  PubMed  CAS  Google Scholar 

  4. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29:233–240

    Article  PubMed  CAS  Google Scholar 

  5. Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15:138–147

    Article  PubMed  CAS  Google Scholar 

  6. Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 99:351–358

    Article  PubMed  CAS  Google Scholar 

  7. Esche C, Lokshin A, Shurin GV et al (1999) Tumor’s other immune targets: dendritic cells. J Leukoc Biol 66:336–344

    PubMed  CAS  Google Scholar 

  8. Aalamian M, Pirtskhalaishvili G, Nunez A et al (2001) Human prostate cancer regulates generation and maturation of monocyte-derived dendritic cells. Prostate 46:68–75

    Article  PubMed  CAS  Google Scholar 

  9. Katsenelson NS, Shurin GV, Bykovskaia SN et al (2001) Human small cell lung carcinoma and carcinoid tumor regulate dendritic cell maturation and function. Mod Pathol 14:40–45

    Article  PubMed  CAS  Google Scholar 

  10. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  PubMed  CAS  Google Scholar 

  11. Pan G, Bauer JH, Haridas V et al (1998) Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 431:351–356

    Article  PubMed  CAS  Google Scholar 

  12. Liu J, Na S, Glasebrook A et al (2001) Enhanced CD4+ T cell proliferation and Th2 cytokine production in DR6-deficient mice. Immunity 15:23–34

    Article  PubMed  CAS  Google Scholar 

  13. Zhao H, Yan M, Wang H et al (2001) Impaired c-Jun amino terminal kinase activity and T cell differentiation in death receptor 6-deficient mice. J Exp Med 194:1441–1448

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt CS, Liu J, Zhang T et al (2003) Enhanced B cell expansion, survival, and humoral responses by targeting death receptor 6. J Exp Med 197:51–62

    Article  PubMed  CAS  Google Scholar 

  15. Kasof GM, Lu JJ, Liu D et al (2001) Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene 20:7965–7975

    Article  PubMed  CAS  Google Scholar 

  16. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  PubMed  CAS  Google Scholar 

  17. Seiki M (2003) Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194:1–11

    Article  PubMed  CAS  Google Scholar 

  18. Tam EM, Morrison CJ, Wu YI et al (2004) Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc Natl Acad Sci U S A 101:6917–6922

    Article  PubMed  CAS  Google Scholar 

  19. Sato H, Takino T, Okada Y et al (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61–65

    Article  PubMed  CAS  Google Scholar 

  20. Sounni NE, Devy L, Hajitou A et al (2002) MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. Faseb J 16:555–564

    Article  PubMed  CAS  Google Scholar 

  21. Chang CC, Wright A, Punnonen J (2000) Monocyte-derived CD1a+ and CD1a− dendritic cell subsets differ in their cytokine production profiles, susceptibilities to transfection, and capacities to direct Th cell differentiation. J Immunol 165:3584–3591

    PubMed  CAS  Google Scholar 

  22. O’Garra A (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8:275–283

    Article  PubMed  CAS  Google Scholar 

  23. de Jong EC, Smits HH, Kapsenberg ML (2005) Dendritic cell-mediated T cell polarization. Springer Semin Immunopathol 26:289–307

    Article  PubMed  Google Scholar 

  24. Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3:984–993

    Article  PubMed  CAS  Google Scholar 

  25. Rovere-Querini P, Capobianco A, Scaffidi P et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5:825–830

    Article  PubMed  CAS  Google Scholar 

  26. Dumitriu IE, Baruah P, Valentinis B et al (2005) Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol 174:7506–7515

    PubMed  CAS  Google Scholar 

  27. Prechtel AT, Steinkasserer A (2007) CD83: an update on functions and prospects of the maturation marker of dendritic cells. Arch Dermatol Res 299:59–69

    Article  PubMed  CAS  Google Scholar 

  28. Laguens G, Coronato S, Laguens R et al (2002) Human regional lymph nodes draining cancer exhibit a profound dendritic cell depletion as comparing to those from patients without malignancies. Immunol Lett 84:159–162

    Article  PubMed  CAS  Google Scholar 

  29. Polak ME, Johnson P, Di Palma S et al (2005) Presence and maturity of dendritic cells in melanoma lymph node metastases. J Pathol 207:83–90

    Article  PubMed  Google Scholar 

  30. Cochran AJ, Huang RR, Lee J et al (2006) Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol 6:659–670

    Article  PubMed  CAS  Google Scholar 

  31. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628

    Article  PubMed  CAS  Google Scholar 

  32. Ishigami S, Natsugoe S, Uenosono Y et al (2003) Infiltration of antitumor immunocytes into the sentinel node in gastric cancer. J Gastrointest Surg 7:735–739

    Article  PubMed  Google Scholar 

  33. Iyoda T, Shimoyama S, Liu K et al (2002) The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195:1289–1302

    Article  PubMed  CAS  Google Scholar 

  34. Liu K, Iyoda T, Saternus M et al (2002) Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196:1091–1097

    Article  PubMed  CAS  Google Scholar 

  35. Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    PubMed  CAS  Google Scholar 

  36. Ormandy LA, Hillemann T, Wedemeyer H et al (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65:2457–2464

    Article  PubMed  CAS  Google Scholar 

  37. Larmonier N, Marron M, Zeng Y et al (2007) Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immunother 56:48–59

    Article  PubMed  CAS  Google Scholar 

  38. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  39. Fisson S, Darrasse-Jeze G, Litvinova E et al (2003) Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med 198:737–746

    Article  PubMed  CAS  Google Scholar 

  40. Whiteside TL, Stanson J, Shurin MR et al (2004) Antigen-processing machinery in human dendritic cells: up-regulation by maturation and down-regulation by tumor cells. J Immunol 173:1526–1534

    PubMed  CAS  Google Scholar 

  41. Kim R, Emi M, Tanabe K (2005) Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther 4:924–933

    Article  PubMed  CAS  Google Scholar 

  42. Allavena P, Piemonti L, Longoni D et al (1998) IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 28:359–369

    Article  PubMed  CAS  Google Scholar 

  43. Buelens C, Verhasselt V, De Groote D et al (1997) Interleukin-10 prevents the generation of dendritic cells from human peripheral blood mononuclear cells cultured with interleukin-4 and granulocyte/macrophage-colony-stimulating factor. Eur J Immunol 27:756–762

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Benschop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeRosa, D.C., Ryan, P.J., Okragly, A. et al. Tumor-derived death receptor 6 modulates dendritic cell development. Cancer Immunol Immunother 57, 777–787 (2008). https://doi.org/10.1007/s00262-007-0413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0413-1

Keywords

Navigation