Skip to main content

Advertisement

Log in

Single-cell and spatial transcriptome analyses revealed cell heterogeneity and immune environment alternations in metastatic axillary lymph nodes in breast cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Tumor heterogeneity plays essential roles in developing cancer therapies, including therapies for breast cancer (BC). In addition, it is also very important to understand the relationships between tumor microenvironments and the systematic immune environment.

Methods

Here, we performed single-cell, VDJ sequencing and spatial transcriptome analyses on tumor and adjacent normal tissue as well as axillar lymph nodes (LNs) and peripheral blood mononuclear cells (PBMCs) from 8 BC patients.

Results

We found that myeloid cells exhibited environment-dependent plasticity, where a group of macrophages with both M1 and M2 signatures possessed high tumor specificity spatially and was associated with worse patient survival. Cytotoxic T cells in tumor sites evolved in a separate path from those in the circulatory system. T cell receptor (TCR) repertoires in metastatic LNs showed significant higher consistency with TCRs in tumor than those in nonmetastatic LNs and PBMCs, suggesting the existence of common neo-antigens across metastatic LNs and primary tumor cites. In addition, the immune environment in metastatic LNs had transformed into a tumor-like status, where pro-inflammatory macrophages and exhausted T cells were upregulated, accompanied by a decrease in B cells and neutrophils. Finally, cell interactions showed that cancer-associated fibroblasts (CAFs) contributed most to shaping the immune-suppressive microenvironment, while CD8+ cells were the most signal-responsive cells.

Conclusions

This study revealed the cell structures of both micro- and macroenvironments, revealed how different cells diverged in related contexts as well as their prognostic capacities, and displayed a landscape of cell interactions with spatial information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated in this study have been uploaded to Genome Sequence Archive (GSA, https://ngdc.cncb.ac.cn/) with accession number HRA002051 and OMIX001111 under the project of PRJCA008495. Supplementary files were listed as below: Supplementary patient information file: Supplementary Table file: Table S1–S8; Supplementary Figure file: Figure S1–S16.

References

  1. Watkins EJ (2019) Overview of breast cancer. JAAPA: Off J Am Acad Phys Assist 32:13–17. https://doi.org/10.1097/01.JAA.0000580524.95733.3d

    Article  Google Scholar 

  2. Lehmann BD et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121:2750–2767. https://doi.org/10.1172/JCI45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8:R157. https://doi.org/10.1186/gb-2007-8-8-r157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jordan NV et al (2016) HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537:102–106. https://doi.org/10.1038/nature19328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roarty K, Pfefferle AD, Creighton CJ, Perou CM, Rosen JM (2017) Ror2-mediated alternative Wnt signaling regulates cell fate and adhesion during mammary tumor progression. Oncogene 36:5958–5968. https://doi.org/10.1038/onc.2017.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu S et al (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2:78–91. https://doi.org/10.1016/j.stemcr.2013.11.009

    Article  CAS  Google Scholar 

  7. Visvader JE, Stingl J (2014) Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev 28:1143–1158. https://doi.org/10.1101/gad.242511.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wahl GM, Spike BT (2017) Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. NPJ Breast Cancer 3:14. https://doi.org/10.1038/s41523-017-0012-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bates JP, Derakhshandeh R, Jones L, Webb TJ (2018) Mechanisms of immune evasion in breast cancer. BMC Cancer 18:556. https://doi.org/10.1186/s12885-018-4441-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denkert C et al (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X

    Article  PubMed  Google Scholar 

  11. Criscitiello C et al (2020) Tumor-infiltrating lymphocytes (TILs) in ER+/HER2− breast cancer. Breast Cancer Res Treat 183:347–354. https://doi.org/10.1007/s10549-020-05771-7

    Article  CAS  PubMed  Google Scholar 

  12. Mahmoud SM et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol 29:1949–1955. https://doi.org/10.1200/JCO.2010.30.5037

    Article  Google Scholar 

  13. Savas P et al (2018) Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 24:986–993. https://doi.org/10.1038/s41591-018-0078-7

    Article  CAS  PubMed  Google Scholar 

  14. Chung W et al (2017) Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 8:15081. https://doi.org/10.1038/ncomms15081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Azizi E et al (2018) Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174:1293–1308. https://doi.org/10.1016/j.cell.2018.05.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bassez A et al (2021) A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med 27:820–832. https://doi.org/10.1038/s41591-021-01323-8

    Article  CAS  PubMed  Google Scholar 

  17. Xu K et al (2021) Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis 10:66. https://doi.org/10.1038/s41389-021-00355-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lawson DA et al (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526:131–135. https://doi.org/10.1038/nature15260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davis RT et al (2020) Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol 22:310–320. https://doi.org/10.1038/s41556-020-0477-0

    Article  CAS  PubMed  Google Scholar 

  20. Mao X et al (2021) Single-cell transcriptome analysis revealed the heterogeneity and microenvironment of gastrointestinal stromal tumors. Cancer Sci 112:1262–1274. https://doi.org/10.1111/cas.14795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20:296. https://doi.org/10.1186/s13059-019-1874-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stuart T et al (2019) Comprehensive integration of single-cell data. Cell 177:1888–1902. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aran D et al (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20:163–172. https://doi.org/10.1038/s41590-018-0276-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korsunsky I et al (2019) Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 16:1289–1296. https://doi.org/10.1038/s41592-019-0619-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao J et al (2019) The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496–502. https://doi.org/10.1038/s41586-019-0969-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haghverdi L, Buttner M, Wolf FA, Buettner F, Theis FJ (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13:845–848. https://doi.org/10.1038/nmeth.3971

    Article  CAS  PubMed  Google Scholar 

  27. La Manno G et al (2018) RNA velocity of single cells. Nature 560:494–498. https://doi.org/10.1038/s41586-018-0414-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1128

    Article  PubMed  Google Scholar 

  29. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aibar S et al (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086. https://doi.org/10.1038/nmeth.4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Curtis C et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352. https://doi.org/10.1038/nature10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hindley JP et al (2011) Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Can Res 71:736–746. https://doi.org/10.1158/0008-5472.CAN-10-1797

    Article  CAS  Google Scholar 

  33. Jin S et al (2021) Inference and analysis of cell–cell communication using cell chat. Nat Commun 12:1088. https://doi.org/10.1038/s41467-021-21246-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He B et al (2020) Integrating spatial gene expression and breast tumour morphology via deep learning. Nat Biomed Eng 4:827–834. https://doi.org/10.1038/s41551-020-0578-x

    Article  CAS  PubMed  Google Scholar 

  35. Kleshchevnikov V et al (2022) Cell 2location maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol 40:661–671. https://doi.org/10.1038/s41587-021-01139-4

    Article  CAS  PubMed  Google Scholar 

  36. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268. https://doi.org/10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cane S et al (2019) The Endless Saga of Monocyte Diversity. Front Immunol 10:1786. https://doi.org/10.3389/fimmu.2019.01786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bain CC et al (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929–937. https://doi.org/10.1038/ni.2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guilliams M, Mildner A, Yona S (2018) Developmental and functional heterogeneity of monocytes. Immunity 49:595–613. https://doi.org/10.1016/j.immuni.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  40. Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I (2020) CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. Int J Mol Sci 21:7619. https://doi.org/10.3390/ijms21207619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia KA et al (2022) Fatty acid binding protein 5 regulates lipogenesis and tumor growth in lung adenocarcinoma. Life Sci 301:120621. https://doi.org/10.1016/j.lfs.2022.120621

    Article  CAS  PubMed  Google Scholar 

  42. Wang W et al (2021) Downregulation of FABP5 suppresses the proliferation and induces the apoptosis of gastric cancer cells through the hippo signaling pathway. DNA Cell Biol 40:1076–1086. https://doi.org/10.1089/dna.2021.0370

    Article  CAS  PubMed  Google Scholar 

  43. (2022) FOLR2+ macrophages are associated with T-cell infiltration and improved prognosis. Cancer Discov 12:1407. https://doi.org/10.1158/2159-8290.CD-RW2022-058

  44. Preuss I et al (2014) Transcriptional regulation and functional characterization of the oxysterol/EBI2 system in primary human macrophages. Biochem Biophys Res Commun 446:663–668. https://doi.org/10.1016/j.bbrc.2014.01.069

    Article  CAS  PubMed  Google Scholar 

  45. Li S et al (2021) S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-beta/USF2 axis in colorectal cancer. Cancer Commun 41:154–170. https://doi.org/10.1002/cac2.12130

    Article  Google Scholar 

  46. Zha H et al (2016) S100A8 facilitates the migration of colorectal cancer cells through regulating macrophages in the inflammatory microenvironment. Oncol Rep 36:279–290. https://doi.org/10.3892/or.2016.4790

    Article  CAS  PubMed  Google Scholar 

  47. Kim JH et al (2020) Functions of human liver CD69(+)CD103(-)CD8(+) T cells depend on HIF-2alpha activity in healthy and pathologic livers. J Hepatol 72:1170–1181. https://doi.org/10.1016/j.jhep.2020.01.010

    Article  CAS  PubMed  Google Scholar 

  48. Palazon A et al (2017) An HIF-1alpha/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32:669–683. https://doi.org/10.1016/j.ccell.2017.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pichler WJ, Wyss-Coray T (1994) T cells as antigen-presenting cells. Immunol Today 15:312–315. https://doi.org/10.1016/0167-5699(94)90078-7

    Article  CAS  PubMed  Google Scholar 

  50. Nieszporek A, Skrzypek K, Adamek G, Majka M (2019) Molecular mechanisms of epithelial to mesenchymal transition in tumor metastasis. Acta Biochim Pol 66:509–520. https://doi.org/10.18388/abp.2019_2899

    Article  CAS  PubMed  Google Scholar 

  51. Macian F (2019) Autophagy in T cell function and aging. Front Cell Dev Biol 7:213. https://doi.org/10.3389/fcell.2019.00213

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang L et al (2018) Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564:268–272. https://doi.org/10.1038/s41586-018-0694-x

    Article  CAS  PubMed  Google Scholar 

  53. Rubio AJ, Porter T, Zhong X (2020) Duality of B cell-CXCL13 axis in tumor immunology. Front Immunol 11:521110. https://doi.org/10.3389/fimmu.2020.521110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohue Y, Nishikawa H (2019) Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? Cancer Sci 110:2080–2089. https://doi.org/10.1111/cas.14069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong KY et al (2018) CD83 antibody inhibits human B cell responses to antigen as well as dendritic cell-mediated CD4 T cell responses. J Immunol 200:3383–3396. https://doi.org/10.4049/jimmunol.1700064

    Article  CAS  PubMed  Google Scholar 

  56. Hollern DP et al (2019) B cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell 179:1191–1206. https://doi.org/10.1016/j.cell.2019.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garaud S et al (2019) Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI insight 4:e129641. https://doi.org/10.1172/jci.insight.129641

    Article  PubMed Central  Google Scholar 

  58. Kim HS, Kim MG, Min KW, Jung US, Kim DH (2021) High MMP-11 expression associated with low CD8+ T cells decreases the survival rate in patients with breast cancer. PLoS ONE 16:e0252052. https://doi.org/10.1371/journal.pone.0252052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eiro N et al (2019) MMP11 expression in intratumoral inflammatory cells in breast cancer. Histopathology 75:916–930. https://doi.org/10.1111/his.13956

    Article  PubMed  Google Scholar 

  60. Ji J et al (2020) Fibronectin 1 inhibits the apoptosis of human trophoblasts by activating the PI3K/Akt signaling pathway. Int J Mol Med 46:1908–1922. https://doi.org/10.3892/ijmm.2020.4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma J et al (2021) SPARC enhances 5-FU chemosensitivity in gastric cancer by modulating epithelial-mesenchymal transition and apoptosis. Biochem Biophys Res Commun 558:134–140. https://doi.org/10.1016/j.bbrc.2021.04.009

    Article  CAS  PubMed  Google Scholar 

  62. Lv Y et al (2020) CTHRC1 overexpression promotes ectopic endometrial stromal cell proliferation, migration and invasion via activation of the Wnt/beta-catenin pathway. Reprod Biomed Online 40:26–32. https://doi.org/10.1016/j.rbmo.2019.10.001

    Article  CAS  PubMed  Google Scholar 

  63. Murdamoothoo D et al (2021) Tenascin-C immobilizes infiltrating T lymphocytes through CXCL12 promoting breast cancer progression. EMBO Mol Med 13:e13270. https://doi.org/10.15252/emmm.202013270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simon T et al (2019) Differential regulation of T-cell immunity and tolerance by stromal laminin expressed in the lymph node. Transplantation 103:2075–2089. https://doi.org/10.1097/TP.0000000000002774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Koutsioumpa M et al (2012) Pleiotrophin expression and role in physiological angiogenesis in vivo: potential involvement of nucleolin. Vascular cell 4:4. https://doi.org/10.1186/2045-824X-4-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu J et al (2021) M2 macrophage-derived exosomes facilitate HCC metastasis by transferring alphaM beta2 integrin to tumor cells. Hepatology 73:1365–1380. https://doi.org/10.1002/hep.31432

    Article  CAS  PubMed  Google Scholar 

  67. Baracco EE et al (2019) Contribution of annexin A1 to anticancer immunosurveillance. Oncoimmunology 8:e1647760. https://doi.org/10.1080/2162402X.2019.1647760

    Article  PubMed  PubMed Central  Google Scholar 

  68. Korbecki J et al (2020) Fractalkine/CX3CL1 in neoplastic processes. Int J Mol Sci 21:3723. https://doi.org/10.3390/ijms21103723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meurette O, Mehlen P (2018) Notch signaling in the tumor microenvironment. Cancer Cell 34:536–548. https://doi.org/10.1016/j.ccell.2018.07.009

    Article  CAS  PubMed  Google Scholar 

  70. Stanley ER, Chitu V (2014) CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 6:a021857. https://doi.org/10.1101/cshperspect.a021857

    Article  PubMed  PubMed Central  Google Scholar 

  71. de Azevedo RA et al (2020) MIF inhibition as a strategy for overcoming resistance to immune checkpoint blockade therapy in melanoma. Oncoimmunology 9:1846915. https://doi.org/10.1080/2162402X.2020.1846915

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tamura R et al (2019) The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol 37:2. https://doi.org/10.1007/s12032-019-1329-2

    Article  CAS  PubMed  Google Scholar 

  73. Wang M et al (2020) Exosomal LGALS9 in the cerebrospinal fluid of glioblastoma patients suppressed dendritic cell antigen presentation and cytotoxic T-cell immunity. Cell Death Dis 11:896. https://doi.org/10.1038/s41419-020-03042-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu C et al (2014) Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41:270–282. https://doi.org/10.1016/j.immuni.2014.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ren X, Ji Y, Jiang X, Qi X (2018) Down-regulation of siglec-2 (CD22) predicts worse overall survival from HBV-related early-stage hepatocellular carcinoma: a preliminary analysis from Gene Expression Omnibus. Biosci Rep 38:BSR20181423. https://doi.org/10.1042/BSR20181423

    Article  PubMed  PubMed Central  Google Scholar 

  76. Klement JD et al (2018) An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Investig 128:5549–5560. https://doi.org/10.1172/JCI123360

    Article  PubMed  PubMed Central  Google Scholar 

  77. Matsuda T et al (2019) TCR sequencing analysis of cancer tissues and tumor draining lymph nodes in colorectal cancer patients. Oncoimmunology 8:e1588085. https://doi.org/10.1080/2162402X.2019.1588085

    Article  PubMed  PubMed Central  Google Scholar 

  78. Simoni Y et al (2018) Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557:575–579. https://doi.org/10.1038/s41586-018-0130-2

    Article  CAS  PubMed  Google Scholar 

  79. Scheper W et al (2019) Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med 25:89–94. https://doi.org/10.1038/s41591-018-0266-5

    Article  CAS  PubMed  Google Scholar 

  80. Alexander J, Cukierman E (2020) Cancer associated fibroblast: mediators of tumorigenesis. Matrix Biol: J Int Soc Matrix Biol 91–92:19–34. https://doi.org/10.1016/j.matbio.2020.05.004

    Article  CAS  Google Scholar 

  81. Houthuijzen JM, Jonkers J (2018) Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev 37:577–597. https://doi.org/10.1007/s10555-018-9768-3

    Article  CAS  PubMed  Google Scholar 

  82. Jenkins BH, Buckingham JF, Hanley CJ, Thomas GJ (2022) Targeting cancer-associated fibroblasts: challenges, opportunities and future directions. Pharmacol Ther 240:108231. https://doi.org/10.1016/j.pharmthera.2022.108231

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by grants from the National Natural Science Foundation of China (81972335, 82103347), Basic and Applied Basic Research Fund of Guangdong Province (2019A1515110677, 2019A1515110676) and Foshan City Climbing Peak Plan (2019A004), Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan.

Author information

Authors and Affiliations

Authors

Contributions

XM constructed sequencing libraries, performed data analysis and wrote the manuscript. DZ collected the samples. KL, BZ, SY, ChulingZ and ChunguoZ prepared single cell suspensions. JG, FL and SF helped to revise the manuscript. LZ, PC and GY helped to communicate with patients. GC and WL supervised this study.

Corresponding authors

Correspondence to Guoqiang Chen or Wei Luo.

Ethics declarations

Competing interests

The authors declare no potential conflict of interest.

Ethics approval and consent to participate

This study was approved by the independent ethics committee at The First People’s Hospital of Foshan. All patients provided written informed consent to participate in the study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Zhou, D., Lin, K. et al. Single-cell and spatial transcriptome analyses revealed cell heterogeneity and immune environment alternations in metastatic axillary lymph nodes in breast cancer. Cancer Immunol Immunother 72, 679–695 (2023). https://doi.org/10.1007/s00262-022-03278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03278-2

Keywords

Navigation