Skip to main content

Advertisement

Log in

No effect of subperiosteal growth factor application on periosteal neo-chondrogenesis in osteoperiosteal bone grafts for osteochondral defect repair

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to examine the effect of subperiosteal injection of chondroinductive growth factors on the histological and biomechanical outcome of autologous osteoperiosteal grafts.

Methods

Thirty six standardised osteochondral defects were created in the trochlear groove of 18 Göttinger Minipigs and evaluated after six, 12 and 52 weeks. Defects were treated with press-fit implantation of autologous osteoperiosteal cylindrical block-grafts with or without subperiosteal injection of a chondroinductive growth factor mixture (GFM).

Results

Histomorphological analysis showed complete osseointegration of all grafts from six weeks. The periosteum remained in place in 35 of 36 cases. Fibrocartilagineous repair tissue formation occurred at the cambium layer with a maximum at 12 weeks in both groups. Histomorphological grading and biomechanical testing showed highest values at 12 weeks, with signs of tissue degradation at one year. There was no significant difference between both groups.

Conclusion

Transplantation of autologous osteoperiosteal grafts is an effective method to restore subchondral bone defects, but not the overlying cartilage as the repair tissue deteriorates in the long term. Subperiosteal growth factors injection did not stimulate tissue differentiation on a biomechanical and histomorphological level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124

    Article  PubMed  Google Scholar 

  2. Hangody L, Vasarhelyi G, Hangody LR, Sukosd Z, Tibay G, Bartha L, Bodo G (2008) Autologous osteochondral grafting–technique and long-term results. Injury 39(Suppl 1):S32–S39

    Article  PubMed  Google Scholar 

  3. Bentley G, Biant LC, Vijayan S, Macmull S, Skinner JA, Carrington RW (2012) Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br 94:504–509

    PubMed  CAS  Google Scholar 

  4. Krych AJ, Harnly HW, Rodeo SA, Williams RJ 3rd (2012) Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retrospective comparative study. J Bone Joint Surg Am 94:971–978

    Article  PubMed  Google Scholar 

  5. Bedi A, Feeley BT, Williams RJ 3rd (2010) Management of articular cartilage defects of the knee. J Bone Joint Surg Am 92:994–1009

    Article  PubMed  Google Scholar 

  6. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint: a prospective, comparative trial. J Bone Joint Surg Am 85-A:185–192

    PubMed  CAS  Google Scholar 

  7. Joshi N, Reverte-Vinaixa M, Diaz-Ferreiro EW, Dominguez-Oronoz R (2012) Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation. Am J Sports Med 40:1289–1295

    Article  PubMed  Google Scholar 

  8. Dhollander AA, Liekens K, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PC (2012) A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy 28:225–233

    Article  PubMed  Google Scholar 

  9. Tarng YW, Huang BF, Su FC (2012) A novel recirculating flow-perfusion bioreactor for periosteal chondrogenesis. Int Orthop 36:863–868

    Article  PubMed  Google Scholar 

  10. O’Driscoll SW, Fitzsimmons JS (2001) The role of periosteum in cartilage repair. Clin Orthop:S190–207

  11. Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW (2001) Localization of chondrocyte precursors in periosteum. Osteoarthr Cartil 9:215–223

    Article  PubMed  CAS  Google Scholar 

  12. Korkala O, Kuokkanen H (1991) Autogenous osteoperiosteal grafts in the reconstruction of full-thickness joint surface defects. Int Orthop 15:233–237

    PubMed  CAS  Google Scholar 

  13. Pecina M, Jelic M, Martinovic S, Haspl M, Vukicevic S (2002) Articular cartilage repair: the role of bone morphogenetic proteins. Int Orthop 26:131–136

    Article  PubMed  CAS  Google Scholar 

  14. Miura Y, Parvizi J, Fitzsimmons JS, O’Driscoll SW (2002) Brief exposure to high-dose transforming growth factor-beta1 enhances periosteal chondrogenesis in vitro: a preliminary report. J Bone Joint Surg Am 84-A:793–799

    PubMed  Google Scholar 

  15. Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, O’Driscoll SW (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11:55–64

    Article  PubMed  CAS  Google Scholar 

  16. Reinholz GG, Fitzsimmons JS, Casper ME, Ruesink TJ, Chung HW, Schagemann JC, O’Driscoll SW (2009) Rejuvenation of periosteal chondrogenesis using local growth factor injection. Osteoarthr Cartil 17:723–734

    Article  PubMed  CAS  Google Scholar 

  17. Olivos-Meza A, Fitzsimmons JS, Casper ME, Chen Q, An KN, Ruesink TJ, O’Driscoll SW, Reinholz GG (2010) Pretreatment of periosteum with TGF-beta1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits. Osteoarthr Cartil 18:1183–1191

    Article  PubMed  CAS  Google Scholar 

  18. Gotterbarm T, Reitzel T, Schneider U, Voss HJ, Stofft E, Breusch SJ (2003) Integration of periosteum covered autogenous bone grafts with and without autologous chondrocytes. An animal experiment using the Gottinger minipig. Orthopäde 32:65–73

    Article  PubMed  CAS  Google Scholar 

  19. Jung M, Gotterbarm T, Gruettgen A, Vilei SB, Breusch S, Richter W (2005) Molecular characterization of spontaneous and growth-factor-augmented chondrogenesis in periosteum-bone tissue transferred into a joint. Histochem Cell Biol 123:447–456

    Article  PubMed  CAS  Google Scholar 

  20. Gotterbarm T, Breusch SJ, Schneider U, Jung M (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42:71–82

    Article  PubMed  CAS  Google Scholar 

  21. Jung M, Breusch S, Daecke W, Gotterbarm T (2009) The effect of defect localization on spontaneous repair of osteochondral defects in a Gottingen minipig model: a retrospective analysis of the medial patellar groove versus the medial femoral condyle. Lab Anim 43:191–197

    Article  PubMed  CAS  Google Scholar 

  22. Spies CK, Schnurer S, Gotterbarm T, Breusch S (2009) The efficacy of Biobon and Ostim within metaphyseal defects using the Gottinger Minipig. Arch Orthop Trauma Surg 129:979–988

    Article  PubMed  Google Scholar 

  23. Boden SD, Grob D, Damien C (2004) Ne-Osteo bone growth factor for posterolateral lumbar spine fusion: results from a nonhuman primate study and a prospective human clinical pilot study. Spine 29:504–514

    Article  PubMed  Google Scholar 

  24. Damien CJ, Grob D, Boden SD, Benedict JJ (2002) Purified bovine BMP extract and collagen for spine arthrodesis: preclinical safety and efficacy. Spine 27:S50–S58

    Article  PubMed  Google Scholar 

  25. Atkinson BL, Fantle KS, Benedict JJ, Huffer WE, Gutierrez-Hartmann A (1997) Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10 T1/2 cells specifically to the cartilage lineage. J Cell Biochem 65:325–339

    Article  PubMed  CAS  Google Scholar 

  26. Gotterbarm T, Richter W, Jung M, Berardi Vilei S, Mainil-Varlet P, Yamashita T, Breusch SJ (2006) An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials 27:3387–3395

    Article  PubMed  CAS  Google Scholar 

  27. Mainil-Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S (2010) A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med 38:880–890

    Article  PubMed  Google Scholar 

  28. Jackson DW, Lalor PA, Aberman HM, Simon TM (2001) Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am 83-A:53–64

    PubMed  CAS  Google Scholar 

  29. Brown TD, Pope DF, Hale JE, Buckwalter JA, Brand RA (1991) Effects of osteochondral defect size on cartilage contact stress. J Orthop Res 9:559–567

    Article  PubMed  CAS  Google Scholar 

  30. Feczko P, Hangody L, Varga J, Bartha L, Dioszegi Z, Bodo G, Kendik Z, Modis L (2003) Experimental results of donor site filling for autologous osteochondral mosaicplasty. Arthroscopy 19:755–761

    Article  PubMed  Google Scholar 

  31. Steinhagen J, Bruns J, Deuretzbacher G, Ruether W, Fuerst M, Niggemeyer O (2010) Treatment of osteochondritis dissecans of the femoral condyle with autologous bone grafts and matrix-supported autologous chondrocytes. Int Orthop 34:819–825

    Article  PubMed  Google Scholar 

  32. O’Driscoll SW, Salter RB (1984) The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 66:1248–1257

    PubMed  Google Scholar 

  33. van Susante JL, Wymenga AB, Buma P (2003) Potential healing benefit of an osteoperiosteal bone plug from the proximal tibia on a mosaicplasty donor-site defect in the knee. An experimental study in the goat. Arch Orthop Trauma Surg 123:466–470

    Article  PubMed  Google Scholar 

  34. Draenert K, Draenert Y (1988) A new procedure for bone biopsies and cartilage and bone transplantation. Sandorama III–IV:33–40

    Google Scholar 

  35. Narcisi R, Quarto R, Ulivi V, Muraglia A, Molfetta L, Giannoni P (2012) TGF beta-1 administration during ex vivo expansion of human articular chondrocytes in a serum-free medium redirects the cell phenotype toward hypertrophy. J Cell Physiol 227:3282–3290

    Article  PubMed  CAS  Google Scholar 

  36. Watson RS, Gouze E, Levings PP, Bush ML, Kay JD, Jorgensen MS, Dacanay EA, Reith JW, Wright TW, Ghivizzani SC (2010) Gene delivery of TGF-beta1 induces arthrofibrosis and chondrometaplasia of synovium in vivo. Lab Invest 90:1615–1627

    Article  PubMed  CAS  Google Scholar 

  37. Gruber R, Mayer C, Bobacz K, Krauth MT, Graninger W, Luyten FP, Erlacher L (2001) Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells. Endocrinology 142:2087–2094

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Centerpulse Biologics, Winterthur, Switzerland and the Research Fund of the Orthopaedic Department of the University of Heidelberg. The authors thank Dr. vet. H. Lorenz, R. Föhr, K. Goetzke, and M. Daniels for their excellent work and J.-F. Clémence for his support during the experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jung.

Additional information

This work was supported by Centerpulse Biologics, Inc., Winterthur, Switzerland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotterbarm, T., Breusch, S.J., Vilei, S.B. et al. No effect of subperiosteal growth factor application on periosteal neo-chondrogenesis in osteoperiosteal bone grafts for osteochondral defect repair. International Orthopaedics (SICOT) 37, 1171–1178 (2013). https://doi.org/10.1007/s00264-013-1827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-1827-3

Keywords

Navigation