Skip to main content

Advertisement

Log in

Bone-Albumin filling decreases donor site morbidity and enhances bone formation after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autografts

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Donor site pain affects 32–43 % of patients after anterior cruciate ligament surgery when the autograft is freshly harvested bone-patellar tendon-bone tissue. Our aim was to compare functional and morphological differences between donor sites with and without serum albumin-coated bone allograft filling.

Methods

After harvesting and implanting the graft, the tibia site was filled with either fresh autologous cancellous bone enhanced with albumin-coated allograft or autologous bone alone. The patella site was filled either with albumin-coated allograft or with blood clot. Knee function was evaluated by the VISA, Lysholm and IKDC scores and a visual analog scale of pain during standing, kneeling and crouching after six weeks and six months. Computed tomography was performed at six months for morphological evaluation.

Results

At six weeks, both groups were still recovering from surgery and the overall knee function was still impaired but the functional scores were significantly higher in the Bone-Albumin group. The pain with crouching and kneeling was also lower as compared to controls. At six months, the knee function scores were close to normal, with a slight decrease in the controls. Pain at kneeling was still prominent in the controls, but significantly lower in the Bone-Albumin group. Computed tomography showed significantly smaller bone defects and higher bone density in the Bone-Albumin group.

Conclusions

Results from the present study indicate that donor site pain, a disturbing long-term side effect of bone-patellar tendon-bone surgery, is significantly reduced if bone buildup in the patella and the tibia is augmented by serum albumin-coated bone allografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Spindler KP, Kuhn JE, Freedman KB, Matthews CE, Dittus RS, Harrell FE Jr (2004) Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review. Am J Sports Med 32(8):1986–1995

    Article  PubMed  Google Scholar 

  2. Roe J, Pinczewski LA, Russell VJ, Salmon LJ, Kawamata T, Chew M (2005) A 7-year follow-up of patellar tendon and hamstring tendon grafts for arthroscopic anterior cruciate ligament reconstruction: differences and similarities. Am J Sports Med 33(9):1337–1345. doi:10.1177/0363546504274145

    Article  PubMed  Google Scholar 

  3. Holm I, Oiestad BE, Risberg MA, Aune AK (2010) No difference in knee function or prevalence of osteoarthritis after reconstruction of the anterior cruciate ligament with 4-strand hamstring autograft versus patellar tendon-bone autograft: a randomized study with 10-year follow-up. Am J Sports Med 38(3):448–454. doi:10.1177/0363546509350301

    Article  PubMed  Google Scholar 

  4. Meuffels DE, Poldervaart MT, Diercks RL, Fievez AW, Patt TW, Hart CP, Hammacher ER, Meer F, Goedhart EA, Lenssen AF, Muller-Ploeger SB, Pols MA, Saris DB (2012) Guideline on anterior cruciate ligament injury. Acta Orthop 83(4):379–386. doi:10.3109/17453674.2012.704563

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim SJ, Lee SK, Choi CH, Kim SH, Jung M (2014) Graft selection in anterior cruciate ligament reconstruction for smoking patients. Am J Sports Med 42(1):166–172. doi:10.1177/0363546513505191

    Article  PubMed  Google Scholar 

  6. Reinhardt KR, Hetsroni I, Marx RG (2010) Graft selection for anterior cruciate ligament reconstruction: a level I systematic review comparing failure rates and functional outcomes. Orthop Clin North Am 41(2):249–262. doi:10.1016/j.ocl.2009.12.009

    Article  PubMed  Google Scholar 

  7. Kraeutler MJ, Bravman JT, McCarty EC (2013) Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med 41(10):2439–2448. doi:10.1177/0363546513484127

    Article  PubMed  Google Scholar 

  8. Feller JA, Webster KE (2003) A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 31(4):564–573

    PubMed  Google Scholar 

  9. Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renstrom P (2002) Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg Am 84-A(9):1503–1513

    PubMed  Google Scholar 

  10. Holzmann P, Niculescu-Morzsa E, Zwickl H, Halbwirth F, Pichler M, Matzner M, Gottsauner-Wolf F, Nehrer S (2010) Investigation of bone allografts representing different steps of the bone bank procedure using the CAM-model. Altex 27(2):97–103

    PubMed  Google Scholar 

  11. Leitgeb J, Kottstorfer J, Schuster R, Kovar FM, Platzer P, Aldrian S (2014) Primary anterior cruciate ligament reconstruction in athletes: a 5-year follow up comparing patellar tendon versus hamstring tendon autograft. Wien Klin Wochenschr 126(13–14):397–402. doi:10.1007/s00508-014-0550-4

    Article  PubMed  Google Scholar 

  12. Kartus J, Movin T, Karlsson J (2001) Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy 17(9):971–980. doi:10.1053/jars.2001.28979

    Article  CAS  PubMed  Google Scholar 

  13. Skaliczki G, Schandl K, Weszl M, Major T, Kovacs M, Skaliczki J, Szendroi M, Dobo-Nagy C, Lacza Z (2013) Serum albumin enhances bone healing in a nonunion femoral defect model in rats: a computer tomography micromorphometry study. Int Orthop 37(4):741–745. doi:10.1007/s00264-012-1770-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Horvathy DB, Vacz G, Szabo T, Szigyarto IC, Toro I, Vamos B, Hornyak I, Renner K, Klara T, Szabo BT, Dobo-Nagy C, Doros A, Lacza Z (2015) Serum albumin coating of demineralized bone matrix results in stronger new bone formation. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33359

    Google Scholar 

  15. Weszl M, Skaliczki G, Cselenyak A, Kiss L, Major T, Schandl K, Bognar E, Stadler G, Peterbauer A, Csonge L, Lacza Z (2012) Freeze-dried human serum albumin improves the adherence and proliferation of mesenchymal stem cells on mineralized human bone allografts. J Orthop Res 30(3):489–496

    Article  CAS  PubMed  Google Scholar 

  16. Klara T, Csonge L, Janositz G, Csernatony Z, Lacza Z (2014) Albumin-coated structural lyophilized bone allografts: a clinical report of 10 cases. Cell Tissue Bank 15(1):89–97. doi:10.1007/s10561-013-9379-8

    Article  CAS  PubMed  Google Scholar 

  17. Cervellin M, de Girolamo L, Bait C, Denti M, Volpi P (2012) Autologous platelet-rich plasma gel to reduce donor-site morbidity after patellar tendon graft harvesting for anterior cruciate ligament reconstruction: a randomized, controlled clinical study. Knee Surg Sports Traumatol Arthrosc 20(1):114–120. doi:10.1007/s00167-011-1570-5

    Article  CAS  PubMed  Google Scholar 

  18. Seijas R, Rius M, Ares O, Garcia-Balletbo M, Serra I, Cugat R (2015) Healing of donor site in bone-tendon-bone ACL reconstruction accelerated with plasma rich in growth factors: a randomized clinical trial. Knee Surg Sports Traumatol Arthrosc 23(4):991–997. doi:10.1007/s00167-013-2787-2

    Article  PubMed  Google Scholar 

  19. Even J, Eskander M, Kang J (2012) Bone morphogenetic protein in spine surgery: current and future uses. J Am Acad Orthop Surg 20(9):547–552. doi:10.5435/JAAOS-20-09-547

    PubMed  Google Scholar 

  20. Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, Helfand M (2013) Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med 158(12):890–902. doi:10.7326/0003-4819-158-12-201306180-00006

    Article  PubMed  Google Scholar 

  21. Yamaguchi M, Igarashi A, Misawa H, Tsurusaki Y (2003) Enhancement of albumin expression in bone tissues with healing rat fractures. J Cell Biochem 89(2):356–363. doi:10.1002/jcb.10510

    Article  CAS  PubMed  Google Scholar 

  22. Ishida K, Yamaguchi M (2004) Role of albumin in osteoblastic cells: enhancement of cell proliferation and suppression of alkaline phosphatase activity. Int J Mol Med 14(6):1077–1081

    CAS  PubMed  Google Scholar 

  23. Liu X, Zhou X, Li S, Lai R, Zhou Z, Zhang Y, Zhou L (2014) Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts. Int J Nanomedicine 9:1185–1198. doi:10.2147/IJN.S55514

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bernards MT, Qin C, Jiang S (2008) MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin. Colloids Surf B: Biointerfaces 64(2):236–247. doi:10.1016/j.colsurfb.2008.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horvathy DB, Vacz G, Cselenyak A, Weszl M, Kiss L, Lacza Z (2013) Albumin-coated bioactive suture for cell transplantation. Surg Innov 20(3):249–255. doi:10.1177/1553350612451353

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a research sponsorship grant of OrthoSera GmbH to Semmelweis University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsombor Lacza.

Ethics declarations

Conflict of interest

ZL declares conflict of interest as the funder and CEO of the start-up company OrthoSera GmbH, which holds a patent for Bone-Albumin.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards (ALLO-2013-02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schandl, K., Horváthy, D.B., Doros, A. et al. Bone-Albumin filling decreases donor site morbidity and enhances bone formation after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autografts. International Orthopaedics (SICOT) 40, 2097–2104 (2016). https://doi.org/10.1007/s00264-016-3246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-016-3246-8

Keywords

Navigation