Skip to main content

Advertisement

Log in

Crystal chemistry of Fe3+-bearing (Mg, Fe)SiO3 perovskite: a single-crystal X-ray diffraction study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Magnesium silicate perovskite is the predominant phase in the Earth’s lower mantle, and it is well known that incorporation of iron has a strong effect on its crystal structure and physical properties. To constrain the crystal chemistry of (Mg, Fe)SiO3 perovskite more accurately, we synthesized single crystals of Mg0.946(17)Fe0.056(12)Si0.997(16)O3 perovskite at 26 GPa and 2,073 K using a multianvil press and investigated its crystal structure, oxidation state and iron-site occupancy using single-crystal X-ray diffraction and energy-domain Synchrotron Mössbauer Source spectroscopy. Single-crystal refinements indicate that all iron (Fe2+ and Fe3+) substitutes on the A-site only, where \( {\text{Fe}}^{ 3+ } /\Upsigma {\text{Fe}}\sim 20\,\% \) based on Mössbauer spectroscopy. Charge balance likely occurs through a small number of cation vacancies on either the A- or the B-site. The octahedral tilt angle (Φ) calculated for our sample from the refined atomic coordinates is 20.3°, which is 2° higher than the value calculated from the unit-cell parameters (a = 4.7877 Å, b = 4.9480 Å, c = 6.915 Å) which assumes undistorted octahedra. A compilation of all available single-crystal data (atomic coordinates) for (Mg, Fe)(Si, Al)O3 perovskite from the literature shows a smooth increase of Φ with composition that is independent of the nature of cation substitution (e.g., \( {\text{Mg}}^{ 2+ } - {\text{Fe}}^{ 2+ } \) or \( {\text{Mg}}^{ 2+ } {\text{Si}}^{ 4+ } - {\text{Fe}}^{ 3+ } {\text{Al}}^{ 3+ } \) substitution mechanism), contrary to previous observations based on unit-cell parameter calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrault D, Bolfan-Casanova N, Guignot N (2001) Equation of state of lower mantle (Al, Fe)-MgSiO3 perovskite. Earth Planet Sci Lett 193:501–508

    Article  Google Scholar 

  • Andrault D, Bolfan-Casanova N, Bouhifd MA, Guignot N, Kawamoto T (2007) The role of Al-defects on the equation of state of Al-(Mg, Fe)SiO3 perovskite. Earth Planet Sci Lett 263:167–179

    Article  Google Scholar 

  • Boffa Ballaran T, Kurnosov A, Glazyrin K, Frost DJ, Merlini M, Hanfland M, Caracas R (2012) Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth Planet Sci Lett 333–334:181–190

    Article  Google Scholar 

  • Bolfan-Casanova N (2000) The distribution of water in the Earth’s mantle: an experimental and infrared spectroscopic study. University of Bayreuth, Dissertation

    Google Scholar 

  • Catalli K, Shim S-H, Prakapenka VB, Zhao J, Sturhahn W, Chow P, Xiao Y, Liu H, Cynn H, Evans WJ (2010) Spin state of ferric iron in MgSiO3 perovskite and its elastic properties. Earth Planet Sci Lett 289:68–75

    Article  Google Scholar 

  • Catalli K, Shim SH, Dera P, Prakapenka VB, Zhao J, Sturhahn W, Chow P, Xiao Y, Cynn H, Evans WJ (2011) Effects of the Fe3+ spin transition on the properties of aluminous perovskite-New insights for lower-mantle seismic heterogeneities. Earth Planet Sci Lett 310:293–302

    Article  Google Scholar 

  • Diffraction Oxford (2006) CrysAlis CCD, RED. Oxford Diffraction Ltd, Abingdon

    Google Scholar 

  • Dobson DP, Jacobsen SD (2004) The flux growth of magnesium silicate perovskite single crystals. Am Miner 89:807–811

    Google Scholar 

  • Fei Y, Virgo D, Mysen BO, Wang Y, Mao HK (1994) Temperature-dependent electron delocalization in (Mg, Fe)SiO3 perovskite. Am Miner 79:826–837

    Google Scholar 

  • Fei Y, Wang Y, Finger LW (1996) Maximum solubility of FeO in (Mg, Fe)SiO3-perovskite as a function of temperature at 26 GPa: implication for FeO content in the lower mantle. J Geophys Res 101:11525–11530

    Article  Google Scholar 

  • Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M, Haüsermann D (1998) PVT equation of state of MgSiO3 perovskite. Phys Earth Planet Inter 105:21–31

    Article  Google Scholar 

  • Holzapfel C, Rubie DC, Frost DJ, Langenhorst F (2005) Fe–Mg interdiffusion in (Mg, Fe)SiO3 perovskite and lower mantle reequilibration. Science 309:1707–1710

    Article  Google Scholar 

  • Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type (Mg, Fe)SiO3: single-crystal X-ray diffraction study. Am Miner 72:357–360

    Google Scholar 

  • Hsu H, Blaha P, Cococcioni M, Wentzcovitch RM (2011) Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Phys Rev Lett 106:118501

    Article  Google Scholar 

  • Hummer DR, Fei Y (2012) Synthesis and crystal chemistry of Fe3+-bearing (Mg, Fe3+)(Si, Fe3+)O3 perovskite. Am Miner 97:1915–1921

    Article  Google Scholar 

  • Ito E, Yamada H (1982) Stability relations of silicate spinels, ilmenites and perovskite. In: Akimoto S, Manghnani MH (eds) High pressure research in geophysics. Center for Publications, Tokyo, pp 405–419

    Chapter  Google Scholar 

  • Jephcoat AP, Hriljac JA, McCammon CA, O’Neill HSC, Rubie DC, Finger LW (1999) High-resolution synchrotron X-ray powder diffraction and Rietveld structure refinement of two (Mg0.95, Fe0.05)SiO3 perovskite samples synthesized under different oxygen fugacity conditions. Am Miner 84:214–220

    Google Scholar 

  • Keppler H, Frost DJ (2005) Introduction to minerals under extreme conditions. In: Miletich R (ed), Mineral behavior at extreme conditions. Europian Mineralogical Union, pp 1–30

  • Kröger FA, Vink HH (1956) Relations between the concentrations of imperfections in crystalline solids. In: Sritz F, Turnball D (eds) Solid State Physics, vol 3. Academic Press, New York, pp 367–435

    Google Scholar 

  • Kudoh Y, Prewitt CT, Finger LW, Darovskikh A, Ito E (1990) Effect of iron on the crystal structure of (Mg, Fe)SiO3 perovskite. Geophys Res Lett 17:1481–1484

    Article  Google Scholar 

  • Mao HK, Hemley RJ, Fei Y, Shu JF, Chen LC, Jephcoat AP, Wu Y, Bassett WA (1991) Effect of pressure, temperature and composition on lattice parameters and density of (Fe, Mg)SiO3-perovskites to 30 GPa. J Geophys Res 96:8069–8079

    Article  Google Scholar 

  • Martin CD, Parise JB (2008) Structure constraints and instability leading to the post-perovskite phase transition of MgSiO3. Earth Planet Sci Lett 265:630–640

    Article  Google Scholar 

  • McCammon CA (1998) The crystal chemistry of ferric iron in Mg0.95Fe0.05SiO3 perovskite as determined by Mössbauer spectroscopy in the temperature range 80–293 K. Phys Chem Miner 25:292–300

    Article  Google Scholar 

  • McCammon CA, Rubie DC, Ross CR II, Seifert F, O’Neill HSC (1992) Mössbauer spectra of 57Fe0.05Mg0.95SiO3 perovskite at 80 and 298 K. Amer Mineral 77:894–897

    Google Scholar 

  • Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press Inc, Ontario

    Google Scholar 

  • Nishio-Hamane D, Nagai T, Fujino K, Seto Y, Takafuji N (2005) Fe3+ and Al substitution in MgSiO3 perovskite: implication of the Fe3+AlO3 substitution in MgSiO3 perovskite at the lower mantle condition. Geophys Res Lett 32:L16306

    Article  Google Scholar 

  • Nishio-Hamane D, Seto Y, Fujino K, Nagai T (2008) Effect of FeAlO3 incorporation into MgSiO3 on the bulk modulus of perovskite. Phys Earth Planet Inter 166:219–225

    Article  Google Scholar 

  • Nishiyama N, Yagi T, Ono S, Gotou H, Harada T, Kikegawa T (2007) Effect of incorporation of iron and aluminum on the thermoelastic properties of magnesium silicate perovskite. Phys Chem Miner 34:131–143

    Article  Google Scholar 

  • O’Keeffe M, Hyde BG, Bovin JO (1979) Contribution to the crystal chemistry of orthorhombic perovskite: MgSiO3 and NaMgF3. Phys Chem Miner 4:299–305

    Article  Google Scholar 

  • O’Neill B, Jeanloz R (1994) MgSiO3–FeSiO3–Al2O3 in the Earth’s lower mantle: perovskite and garnet at 1200 km depth. J Geophys Res 99:19901–19915

    Article  Google Scholar 

  • Ohta K, Onoda S, Hirose K, Sinmyo R, Shimizu K, Sata N, Ohishi Y, Yasuhara A (2008) The electrical conductivity of post-perovskite in Earth’s D’’ layer. Science 320:89–91

    Article  Google Scholar 

  • Parise LB, Wang Y, Yeganeh-Haeri A, Cox DE, Fei Y (1990) Crystal structure and thermal expansion of (Mg, Fe)SiO3 perovskite. Geophys Res Lett 17:2089–2092

    Article  Google Scholar 

  • Potapkin V, Chumakov AI, Smirnov GV, Celse J-P, Rüffer R, McCammon C, Dubrovinsky L (2012) The 57Fe synchrotron Mössbauer source at the ESRF. J Synchrotron Radiat 19:559–569

    Article  Google Scholar 

  • Potapkin V, McCammon C, Glazyrin K, Kantor A, Kupenko I, Prescher C, Sinmyo R, Smirnov GV, Chumakov AI, Rüffer R, Dubrovinsky L (2013) Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle. Nat Commun 4:1427

    Article  Google Scholar 

  • Saikia A, Boffa Ballaran T, Frost DJ (2009) The effect of Fe and Al substitution on the compressibility of MgSiO3-perovskite determined through single-crystal X-ray diffraction. Phys Earth Planet Inter 173:153–161

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Article  Google Scholar 

  • Tange Y, Takahashi E, Nishihara Y, Funakoshi K, Sata N (2009) Phase relations in the system MgO–FeO–SiO2 to 50 GPa and 2000 °C: an application of experimental techniques using multianvil apparatus with sintered diamond anvils. J Geophys Res 114:B02214

    Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2010) Structural distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low-pressure analogue to MgSiO3. Phys Earth Planet Inter 181:54–59

    Article  Google Scholar 

  • Vanpeteghem CB, Angel RJ, Ross NL, Jacobsen SD, Dobson DP, Litasov KD, Ohtani E (2006) Al, Fe substitution in the MgSiO3 perovskite structure: a single-crystal X-ray diffraction study. Phys Earth Planet Inter 155:96–103

    Article  Google Scholar 

  • Walter MJ, Kubo A, Yoshino T, Brodholt J, Koga KT, Ohishi Y (2004) Phase relations and equation-of-state of aluminous Mg–Silicate perovskite and implications for Earth’s lower mantle. Earth Planet Sci Lett 222:501–516

    Article  Google Scholar 

  • Wang Y, Weidner DJ, Liebermann RC, Zhao Y (1994) P–V–T equation of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle. Phys Earth Planet Inter 83:13–40

    Article  Google Scholar 

  • Xu Y, McCammon C, Poe BT (1998) The effect of alumina on the electrical conductivity of silicate perovskite. Science 282:922–924

    Article  Google Scholar 

  • Zhao Y, Weidner DJ, Parise JB, Cox DE (1993) Critical phenomena and phase transition of perovskite—data for NaMgF3 perovskite. Part II. Phys Earth Planet Inter 76:17–34

    Article  Google Scholar 

Download references

Acknowledgments

R.S. was supported by a Research Fellowship for Postdoctoral Researchers awarded by the Alexander von Humboldt Foundation. We thank the European Synchrotron Radiation Facility for provision of synchrotron radiation (ID18). We also thank Konstantin Glazyrin, Aleksandr I. Chumakov, Gennadii V. Smirnov, Rudolf Rüffer and Jean-Philippe Celse for additional technical assistance and Yoichi Nakajima for support during multianvil experiments. The project was partly financed by funds from the German Science Foundation (DFG) in their normal funding programme and Priority Programme SPP1236, the PROCOPE exchange programme and the German Federal Ministry for Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Sinmyo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinmyo, R., Bykova, E., McCammon, C. et al. Crystal chemistry of Fe3+-bearing (Mg, Fe)SiO3 perovskite: a single-crystal X-ray diffraction study. Phys Chem Minerals 41, 409–417 (2014). https://doi.org/10.1007/s00269-013-0639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0639-8

Keywords

Navigation