Skip to main content
Log in

Restenosis of the CYPHER-Select, TAXUS-Express, and Polyzene-F Nanocoated Cobalt-Chromium Stents in the Minipig Coronary Artery Model

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To date no direct experimental comparison between the CYPHER-Select and TAXUS-Express stents is available. Therefore, we investigated late in-stent stenosis, thrombogenicity, and inflammation, comparing the CYPHER-Select, TAXUS-Express, and custom-made cobalt chromium Polyzene-F nanocoated stents (CCPS) in the minipig coronary artery model.

Methods

The three stent types were implanted in the right coronary artery of 30 minipigs. The primary endpoint was in-stent stenosis assessed by quantitative angiography and microscopy. Secondary endpoints were inflammation and thrombogenicity evaluated by scores for inflammation and immunoreactivity (C-reactive protein and transforming growth factor beta). Follow-up was at 4 and 12 weeks.

Results

Stent placement was successful in all animals; no thrombus deposition occurred. Quantitative angiography did not depict statistically significant differences between the three stent types after 4 and 12 weeks. Quantitative microscopy at 4 weeks showed a statistically significant thicker neointima (p = 0.0431) for the CYPHER (105.034 ± 62.52 μm) versus the TAXUS (74.864 ± 66.03 μm) and versus the CCPS (63.542 ± 39.57 μm). At 12 weeks there were no statistically significant differences. Inflammation scores at 4 weeks were significantly lower for the CCPS and CYPHER compared with the TAXUS stent (p = 0.0431). After 12 weeks statistical significance was only found for the CYPHER versus the TAXUS stent (p = 0.0431). The semiquantitative immunoreactivity scores for C-reactive protein and transforming growth factor beta showed no statistically significant differences between the three stent types after 4 and 12 weeks.

Conclusions

The CCPS provided effective control of late in-stent stenosis and thrombogenicity in this porcine model compared with the two drug-eluting stents. Its low inflammation score underscores its noninflammatory potential and might explain its equivalence to the two DES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moliterno DJ (2005) Healing Achilles: Sirolimus versus paclitaxel. N Engl J Med 353:724–727

    Article  PubMed  CAS  Google Scholar 

  2. Farb A, Boam AB (2007) Stent thrombosis redux: The FDA perspective. N Engl J Med 356:984–987

    Article  PubMed  CAS  Google Scholar 

  3. Camenzind E, Steg PG, Wijns W (2007) Stent thrombosis late after implantation of first-generation drug-eluting stents: A cause for concern. Circulation 115:1440–1455

    Article  PubMed  Google Scholar 

  4. Maisel WH (2007) Unanswered questions: Drug-eluting stents and the risk of late thrombosis. N Engl J Med 356:981–984

    Article  PubMed  CAS  Google Scholar 

  5. Virmani R, Liistro F, Stankovic G, et al. (2002) Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation 106:2649–2651

    Article  PubMed  CAS  Google Scholar 

  6. Tur DR, Korshak VV, Vinogradova SV, et al. (1986) Effects of biological medium on the properties of poly[bis(trifluoroethoxy)phosphazene]. Acta Polym 37:203–208

    Article  CAS  Google Scholar 

  7. Vinogradova SV, Tur DR, Vasnev VA (1998) Open-chain poly(organophosphazenes). Synthesis and properties. Russian Chem Rev 67:515–534

    Article  Google Scholar 

  8. Welle A, Grunze M, Tur D (1998) Plasma protein adsorption and platelet adhesion on poly[bis(trifluoroethoxy)phosphazene] and reference material surfaces. J Colloid Interface Sci 197:263–274

    Article  PubMed  CAS  Google Scholar 

  9. Richter GM, Stampfl U, Stampfl S, et al. (2005) A new polymer concept for coating of vascular stents using PTFEP (poly(bis(trifluoroethoxy)phosphazene) to reduce thrombogenicity and late in-stent stenosis. Invest Radiol 40:210–218

    Article  PubMed  CAS  Google Scholar 

  10. Satzl S, Henn C, Christoph P, et al. (2007) The efficacy of nanoscale poly[bis(trifluoroethoxy) phosphazene] (PTFEP) coatings in reducing thrombogenicity and late in-stent stenosis in a porcine coronary artery model. Invest Radiol 42:303–311

    Article  PubMed  CAS  Google Scholar 

  11. Bayne K (1998) Developing guidelines on the care and use of animals. Ann N Y Acad Sci 862:105–110

    Article  PubMed  CAS  Google Scholar 

  12. Schwartz RS, Edelman ER, Carter A, et al. (2002) Drug-eluting stents in preclinical studies: Recommended evaluation from a consensus group. Circulation 106:1867–1873

    Article  PubMed  Google Scholar 

  13. Schwartz RS, Huber KC, Murphy JG, et al. (1992) Restenosis and the proportional neointimal response to coronary artery injury: Results in a porcine model. J Am Coll Cardiol 19:267–274

    Article  PubMed  CAS  Google Scholar 

  14. Kornowski R, Hong MK, Tio FO, et al. (1998) In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 31:224–230

    Article  PubMed  CAS  Google Scholar 

  15. Finis K, Sultmann H, Ruschhaupt M, et al. (2006) Analysis of pigmented villonodular synovitis with genome-wide complementary DNA microarray and tissue array technology reveals insight into potential novel therapeutic approaches. Arthritis Rheum 54:1009–1019

    Article  PubMed  CAS  Google Scholar 

  16. Hong MK, Kornowski R, Bramwell O, et al. (2001) Paclitaxel-coated Gianturco-Roubin II (GR II) stents reduce neointimal hyperplasia in a porcine coronary in-stent restenosis model. Coron Artery Dis 12:513–515

    Article  PubMed  CAS  Google Scholar 

  17. Drachman DE, Edelman ER, Seifert P, et al. (2000) Neointimal thickening after stent delivery of paclitaxel: Change in composition and arrest of growth over six months. J Am Coll Cardiol 36:2325–2332

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki T, Kopia G, Hayashi S, et al. (2001) Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 104:1188–1193

    Article  PubMed  CAS  Google Scholar 

  19. Carter AJ, Aggarwal M, Kopia GA, et al. (2004) Long-term effects of polymer-based, slow-release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc Res 63:617–624

    Article  PubMed  CAS  Google Scholar 

  20. Farb A, Heller PF, Shroff S, et al. (2001) Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation 104:473–479

    Article  PubMed  CAS  Google Scholar 

  21. Finn AV, Kolodgie FD, Harnek J, et al. (2005) Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation 112:270–278

    Article  PubMed  CAS  Google Scholar 

  22. Heldman AW, Cheng L, Jenkins GM, et al. (2001) Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 103:2289–2295

    PubMed  CAS  Google Scholar 

  23. Gaspardone A, Versaci F, Tomai F, et al. (2006) C-Reactive protein, clinical outcome, and restenosis rates after implantation of different drug-eluting stents. Am J Cardiol 97:1311–1316

    Article  PubMed  CAS  Google Scholar 

  24. Chamberlain J, Gunn J, Francis SE, et al. (2001) TGFbeta is active, and correlates with activators of TGFbeta, following porcine coronary angioplasty. Cardiovasc Res 50:125–136

    Article  PubMed  CAS  Google Scholar 

  25. Lagerqvist B, James SK, Stenestrand U, et al. (2007) Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N Engl J Med 356:1009–1019

    Article  PubMed  CAS  Google Scholar 

  26. Luscher TF, Steffel J, Eberli FR, et al. (2007) Drug-eluting stent and coronary thrombosis: Biological mechanisms and clinical implications. Circulation 115:1051–1058

    Article  PubMed  Google Scholar 

  27. Virmani R, Guagliumi G, Farb A, et al. (2004) Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: Should we be cautious? Circulation 109:701–705

    Article  PubMed  Google Scholar 

  28. Richter GM, Palmaz JC, Noeldge G, et al. (1999) Relationship between blood flow, thrombus, and neointima in stents. J Vasc Interv Radiol 10:598–604

    Article  PubMed  CAS  Google Scholar 

  29. Virmani R, Kolodgie FD, Farb A, et al. (2003) Drug eluting stents: are human and animal studies comparable? Heart 89:133–138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding sources. This study was sponsored in part by CeloNova BioSciences., Inc. Newnan, GA, USA.

Financial disclosures. U.S., R.L.-B, and G.M.R. have sponsored research agreements with CeloNova BioSciences, Inc., Newnan, GA, USA. G.M.R. has served as consultant to CeloNova BioSciences, Inc., Newnan, GA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Radeleff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radeleff, B., Thierjung, H., Stampfl, U. et al. Restenosis of the CYPHER-Select, TAXUS-Express, and Polyzene-F Nanocoated Cobalt-Chromium Stents in the Minipig Coronary Artery Model. Cardiovasc Intervent Radiol 31, 971–980 (2008). https://doi.org/10.1007/s00270-007-9243-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-007-9243-y

Keywords

Navigation