Skip to main content

Advertisement

Log in

Feasibility of Intraoperative Nerve Monitoring in Preventing Thermal Damage to the “Nerve at Risk” During Image-Guided Ablation of Tumors

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess feasibility of intraoperative neurophysiologic monitoring (IONM) during image-guided, percutaneous thermal ablation of tumors.

Materials and Methods

From February 2009 to October 2013, a retrospective review of all image-guided percutaneous thermal ablation interventions using IONM was performed and data was compiled using electronic medical records and imaging studies.

Results

Twelve patients were treated in 13 ablation interventions. In 4 patients, real-time feedback from the monitoring neurologist was used to adjust applicator placement and ablation settings. IONM was technically feasible in all procedures and there were no complications related to monitoring or ablation. All nerves at risk remained intact and of the 11 patients who could be followed, none developed new nerve deficit up to a minimum of 2 months after ablation.

Conclusion

IONM is safe and feasible for use during image-guided thermal ablation of tumors in the vicinity of nerves. Outcomes in this study demonstrate its potential utility in image-guided ablation interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dupuy DE, Shulman M. Current status of thermal ablation treatments for lung malignancies. Semin Interv Radiol. 2010;27:268–75.

    Article  Google Scholar 

  2. Gandhi NS, Dupuy DE. Image-guided radiofrequency ablation as a new treatment option for patients with lung cancer. Semin Roentgenol. 2005;40:171–81.

    Article  PubMed  Google Scholar 

  3. Boss A, Clasen S, Kuczyk M, et al. Thermal damage of the genitofemoral nerve due to radiofrequency ablation of renal cell carcinoma: a potentially avoidable complication. AJR Am J Roentgenol. 2005;185:1627–31.

    Article  PubMed  Google Scholar 

  4. Bunch TJ, Bruce GK, Mahapatra S, et al. Mechanisms of phrenic nerve injury during radiofrequency ablation at the pulmonary vein orifice. J Cardiovasc Electrophysiol. 2005;16:1318–25.

    Article  PubMed  Google Scholar 

  5. Wang H, Littrup PJ, Duan Y, Zhang Y, Feng H, Nie Z. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology. 2005;235:289–98.

    Article  PubMed  Google Scholar 

  6. Brown RH, Nash CL. Current status of spinal cord monitoring. Spine (Phila Pa 1976). 1979;4:466–70.

    Article  CAS  Google Scholar 

  7. Nash CL, Lorig RA, Schatzinger LA, Brown RH. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res. 1977;126:100–5.

    PubMed  Google Scholar 

  8. Toleikis JR. Monitoring ASoN. Intraoperative monitoring using somatosensory evoked potentials. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19:241–58.

    Article  PubMed  Google Scholar 

  9. Tiong L, Maddern GJ. Systematic review and meta-analysis of survival and disease recurrence after radiofrequency ablation for hepatocellular carcinoma. Br J Surg. 2011;98:1210–24.

    Article  CAS  PubMed  Google Scholar 

  10. Chen MS, Li JQ, Zheng Y, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg. 2006;243:321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Georgiades CS, Rodriguez R. Efficacy and safety of percutaneous cryoablation for stage 1A/B renal cell carcinoma: results of a prospective, single-arm, 5-year study. Cardiovasc Intervent Radiol. 2014;37:1494–9.

    Article  PubMed  Google Scholar 

  12. Choueiri TK, Schutz FA, Hevelone ND, et al. Thermal ablation vs surgery for localized kidney cancer: a surveillance, epidemiology, and end results (SEER) database analysis. Urology. 2011;78:93–8.

    Article  PubMed  Google Scholar 

  13. Olweny EO, Park SK, Tan YK, Best SL, Trimmer C, Cadeddu JA. Radiofrequency ablation versus partial nephrectomy in patients with solitary clinical T1a renal cell carcinoma: comparable oncologic outcomes at a minimum of 5 years of follow-up. Eur Urol. 2012;61:1156–61.

    Article  PubMed  Google Scholar 

  14. Jahangeer S, Forde P, Soden D, Hinchion J. Review of current thermal ablation treatment for lung cancer and the potential of electrochemotherapy as a means for treatment of lung tumours. Cancer Treat Rev. 2013;39:862–71.

    Article  PubMed  Google Scholar 

  15. Callstrom MR, Atwell TD, Charboneau JW, et al. Painful metastases involving bone: percutaneous image-guided cryoablation–prospective trial interim analysis. Radiology. 2006;241:572–80.

    Article  PubMed  Google Scholar 

  16. Hiraki T, Gobara H, Mimura H, et al. Brachial nerve injury caused by percutaneous radiofrequency ablation of apical lung cancer: a report of four cases. J Vasc Interv Radiol. 2010;21:1129–33.

    Article  PubMed  Google Scholar 

  17. Matsui Y, Hiraki T, Gobara H, et al. Phrenic nerve injury after radiofrequency ablation of lung tumors: retrospective evaluation of the incidence and risk factors. J Vasc Interv Radiol. 2012;23:780–5.

    Article  PubMed  Google Scholar 

  18. Atwell TD, Carter RE, Schmit GD, et al. Complications following 573 percutaneous renal radiofrequency and cryoablation procedures. J Vasc Interv Radiol. 2012;23:48–54.

    Article  PubMed  Google Scholar 

  19. Coskun DJ, Gilchrist J, Dupuy D. Lumbosacral radiculopathy following radiofrequency ablation therapy. Muscle Nerve. 2003;28:754–6.

    Article  PubMed  Google Scholar 

  20. Kashima M, Yamakado K, Takaki H, et al. Complications after 1000 lung radiofrequency ablation sessions in 420 patients: a single center’s experiences. AJR Am J Roentgenol. 2011;197:W576–80.

    Article  PubMed  Google Scholar 

  21. Kumar RS, Gopinath M. A rare cause of foot drop after radiofrequency ablation for varicose veins: case report and review of the literature. Neurol India. 2010;58:303–5.

    Article  PubMed  Google Scholar 

  22. Munk PL, Rashid F, Heran MK, et al. Combined cementoplasty and radiofrequency ablation in the treatment of painful neoplastic lesions of bone. J Vasc Interv Radiol. 2009;20:903–11.

    Article  PubMed  Google Scholar 

  23. Rutkove SB. Effects of temperature on neuromuscular electrophysiology. Muscle Nerve. 2001;24:867–82.

    Article  CAS  PubMed  Google Scholar 

  24. Brodkey JS, Miyazaki Y, Ervin FR, Mark VH. Reversible heat lesions with radiofrequency current. A method of stereotactic localization. J Neurosurg. 1964;21:49–53.

    Article  CAS  PubMed  Google Scholar 

  25. Lee SJ, Choyke LT, Locklin JK, Wood BJ. Use of hydrodissection to prevent nerve and muscular damage during radiofrequency ablation of kidney tumors. J Vasc Interv Radiol. 2006;17:1967–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liddell RP, Solomon SB. Thermal protection during radiofrequency ablation. AJR Am J Roentgenol. 2004;182:1459–61.

    Article  PubMed  Google Scholar 

  27. Callstrom MR, Charboneau JW, Goetz MP, et al. Image-guided ablation of painful metastatic bone tumors: a new and effective approach to a difficult problem. Skeletal Radiol. 2006;35:1–15.

    Article  PubMed  Google Scholar 

  28. Nakatsuka A, Yamakado K, Takaki H, et al. Percutaneous radiofrequency ablation of painful spinal tumors adjacent to the spinal cord with real-time monitoring of spinal canal temperature: a prospective study. Cardiovasc Intervent Radiol. 2009;32:70–5.

    Article  PubMed  Google Scholar 

  29. Schena E, Majocchi L. Assessment of temperature measurement error and its correction during Nd:YAG laser ablation in porcine pancreas. Int J Hyperth. 2014;30:328–34.

    Article  Google Scholar 

  30. Smania N, Berto G, La Marchina E, et al. Rehabilitation of brachial plexus injuries in adults and children. Eur J Phys Rehabil Med. 2012;48:483–506.

    CAS  PubMed  Google Scholar 

  31. Dionigi G, Frattini F. Staged thyroidectomy: time to consider intraoperative neuromonitoring as standard of care. Thyroid. 2013;23:906–8.

    Article  PubMed  Google Scholar 

  32. Sutter M, Eggspuehler A, Grob D, et al. The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1017 patients. Eur Spine J. 2007;16(Suppl 2):S162–70.

    Article  PubMed  Google Scholar 

  33. Fehlings MG, Brodke DS, Norvell DC, Dettori JR. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine Spine (Phila Pa 1976). 2010;35:S37–46.

    Article  Google Scholar 

  34. Tsoumakidou G, Garnon J, Ramamurthy N, Buy X, Gangi A. Interest of electrostimulation of peripheral motor nerves during percutaneous thermal ablation. Cardiovasc Intervent Radiol. 2013;36:1624–8.

    Article  PubMed  Google Scholar 

  35. Dralle H, Sekulla C, Lorenz K, Brauckhoff M, Machens A, Group GIS. Intraoperative monitoring of the recurrent laryngeal nerve in thyroid surgery. World J Surg 2008;32:1358–66.

  36. Kim SM, Kim SH, Seo DW, Lee KW. Intraoperative neurophysiologic monitoring: basic principles and recent update. J Korean Med Sci. 2013;28:1261–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Vrind HH, van Dam WM, Wondergem J, Haveman J. Latent X-ray damage in the rat sciatic nerve results in delay in functional recovery after a heat treatment. Int J Radiat Biol. 1993;63:83–9.

    Article  PubMed  Google Scholar 

  38. Tsutsui S, Iwasaki H, Yamada H, et al. Augmentation of motor evoked potentials using multi-train transcranial electrical stimulation in intraoperative neurophysiologic monitoring during spinal surgery. J Clin Monit Comput. 2014;29:35–9.

    Article  PubMed  Google Scholar 

  39. Cordella R, Acerbi F, Marras CE, et al. Risk of seizures during intraoperative electrocortical stimulation of brain motor areas: a retrospective study on 50 patients. Neurol Sci. 2013;34:63–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Solomon reports grants from AngioDynamics, personal fees from Covidien, grants and personal fees from GE Healthcare, outside of the submitted work.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Marshall.

Ethics declarations

Conflict of interest

Drs. Marshall, Avila, Erinjeri and Maybody have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marshall, R.H., Avila, E.K., Solomon, S.B. et al. Feasibility of Intraoperative Nerve Monitoring in Preventing Thermal Damage to the “Nerve at Risk” During Image-Guided Ablation of Tumors. Cardiovasc Intervent Radiol 39, 875–884 (2016). https://doi.org/10.1007/s00270-015-1287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-015-1287-9

Keywords

Navigation