Skip to main content

Advertisement

Log in

Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex Multiplex technology

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Tumor angiogenesis is essential for tumor growth and metastasis formation. Luminex methodology was used to measure the levels of four angiogenic cytokines in cell culture medium and in the plasma of mice bearing human tumors. We obtained plasma and conditioned culture medium from 12 different human tumor cell lines. Tumor necrosis factor-alpha (TNF-α), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and transforming growth factor-beta (TGF-β) were determined by the Luminex FlowMetrix assay. VEGF, TNF-α, and bFGF were undetectable in non-tumor-bearing animals. HS746T gastric cancer and Caki-1 renal cell cancer cells in culture produced high levels of VEGF (1000 and 450 pg/106 cells, respectively). High levels of TGF-β were produced by HS746T gastric carcinoma and Calu-6 non-small-cell lung carcinoma (3000 and 1000 pg/106 cells, respectively). Caki-1 renal cell carcinoma and Calu-6 non-small-cell lung carcinoma cells in culture produced high levels of bFGF (42 and 10 pg/106 cells, respectively). Caki-1, SW2 SCLC, HCT-116 and HT-29 colon tumors produced high plasma levels of VEGF (200, 220, 42, and 151 pg/ml, respectively) and TGF-β (31, 36, 45, 32 pg/ml, respectively). A positive linear correlation was seen between tumor volume and VEGF in SW2 (r=0.87) and Caki-1 (r=0.47) tumors, and a moderate correlation in HCT116 tumors (r=0.3). Angiogenic profiles in the plasma of nude mice bearing human tumors may be useful to identify appropriate biomarkers for antiangiogenic therapy, as diagnostic and prognostic tools, and to monitor the responses of individual tumors to antiangiogenic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med 1:27–3

    CAS  PubMed  Google Scholar 

  2. Folkman J (1989) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Google Scholar 

  3. Teicher BA (ed) (1999) Antiangiogenic agents in cancer therapy. Humana Press, New Jersey

  4. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  5. Senger D, Galli S, Dvorak A, Perruzzi C, Harvey V, Dvorak H (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    CAS  PubMed  Google Scholar 

  6. Poon RT, Fan S, Wong J (2001) Clinical implications of circulating angiogenic factors in cancer patients. J Clin Oncol 19:1207–1225

    CAS  PubMed  Google Scholar 

  7. Fuhrmann-Benzakein E, Ma M, Rubbia-Brandt L, Mentha G, Ruefenacht D, Sappino A, Pepper M (2000) Elevated levels of angiogenic cytokines in the plasma of cancer patients. Int J Cancer 85:40–45

    CAS  PubMed  Google Scholar 

  8. Oehler MK, Caffier H (2000) Prognostic relevance of serum vascular endothelial growth factor in ovarian cancer. Anticancer Res 20:5109–5112

    CAS  PubMed  Google Scholar 

  9. Salven P, Orpana A, Teerenhovi L, Joensuu H (2000) Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood 96:3712–3718

    CAS  PubMed  Google Scholar 

  10. Jacobsen J, Rasmuson T, Grankvist K, Ljungberg B (2000) Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 163:343–347

    CAS  PubMed  Google Scholar 

  11. Francis J, Bernal SD, Gazdar AF, Thompson R, Baylin S (1980) L-Dopa decarboxylase activity (DCC): a distinguishing biomarker for the growth of small cell lung cancer (SCCL) in tissue culture. Proc Am Assoc Cancer Res 21:52

    Google Scholar 

  12. Gasparini G (2001) Clinical significance of determination of surrogate markers for angiogenesis in breast cancer. Crit Rev Oncol Hematol 37:97–114

    Article  CAS  PubMed  Google Scholar 

  13. Sheen-Chen S, Chen H, Sheen C, Eng H, Chen W (2001) Serum levels of transforming growth factor β1 in patients with breast cancer. Arch Surg 136:937–940

    CAS  PubMed  Google Scholar 

  14. Linderholm B, Grankvist K, Wilking N, Johansson M, Tavelin B, Henriksson R (2000) Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant chemotherapy. J Clin Oncol 18:1423–1431

    CAS  PubMed  Google Scholar 

  15. Foekens J, Peters H, Grebenchtchikov M, Look M, Meijer-van Gelder M, Geurts-Moespot A, van der Kwast T, Sweep C, Klijn G (2001) High tumor levels of VEGF predict poor response to systemic therapy in advanced breast cancer. Cancer Res 61:5407–5414

    CAS  PubMed  Google Scholar 

  16. Kajaniuk D, Marek B, Swietochowska E, Ostrowska Z, Glogowska-Szelag J, Kos-Kudla B, Ciesielska N, Wieloszyski T (2000) Plasma transforming growth factor β1 in breast cancer patients treated with CMF chemotherapy. J Clin Pharm Ther 25:291–294

    Article  PubMed  Google Scholar 

  17. Chin K, Greenman J, Gardiner E, Kumar H, Topping K, Monson J (2000) Pre-operative serum vascular endothelial growth factor can select patients for adjuvant treatment after curative resection in colorectal cancer. Br J Cancer 11:1425–1431

    Article  Google Scholar 

  18. Broll R, Erdmann H, Duchrow M, Oevermann E, Schwandner O, Merkert U, Bruch H, Windhovel U (2001) Vascular endothelial growth factor (VEGF)—a valuable serum tumor marker in patients with colorectal cancer? Eur J Surg Oncol 27:37–42

    Article  CAS  PubMed  Google Scholar 

  19. Werther K, Christensen I, Brunner N, Nielsen H, and the Danish RANX05 Colorectal Cancer Study Group (2000) Soluble vascular endothelial growth factor levels in patients with primary colorectal carcinoma. Eur J Surg Oncol 26:657–662

    Article  CAS  PubMed  Google Scholar 

  20. Takeda A, Shimada H, Imaseki H, Okazumi S, Natsume T, Suzuki T, Ochiai T (2000) Clinical significance of serum vascular endothelial growth factor in colorectal cancer patients: correlation with clinicopathological factors and tumor markers. Oncol Rep 7:333–338

    CAS  PubMed  Google Scholar 

  21. Tsushima H, Ito N, Tamura S, Matsuda Y, Inada M, Yabuuchi I, Imai Y, Nagashima R, Misawa H, Takeda H, Matsuzawa Y, Kawata S (2001) Circulating transforming growth factor β1 as a predictor of liver metastasis after resection in colorectal cancer. Clin Cancer Res 7:1258–1262

    CAS  PubMed  Google Scholar 

  22. Slaton J, Inoue K, Perrotte P, El-Naggar A, Swanson D, Fidler I, Dinney C (2001) Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 158:735–743

    CAS  PubMed  Google Scholar 

  23. Junker U, Haufe C, Nuske K, Rebstock K, Stiener T, Wunderlich H, Junker K, Reinhold D (2000) Elevated plasma TGF-β1 in renal diseases: cause or consequence? Cytokine 12:1084–1091

    CAS  PubMed  Google Scholar 

  24. Kido Y (2001) Vascular endothelial growth factor (VEGF) serum concentration changes during chemotherapy in patients with lung cancer. Kurume Med J 48:43–47

    CAS  PubMed  Google Scholar 

  25. Han H, Silverman J, Santucci T, Macherey R, dAmato T, Tung M, Weyant R, Landreneau R (2001) Vascular endothelial growth factor expression in stage I non-small cell lung cancer correlates with neoangiogenesis and a poor prognosis. Ann Surg Oncol 8:72–79

    Article  CAS  PubMed  Google Scholar 

  26. Baillie R, Carlile J, Pendleton N, Schor A (2001) Prognostic value of vascularity and vascular endothelial growth factor expression in non-small cell lung cancer. J Clin Pathol 54:116–120

    Article  CAS  PubMed  Google Scholar 

  27. Abendstein B, Daxenbichler G, Windbichler G, Zeimet A, Geurts A, Sweep F, Marth C (2000) Predictive value of uPA, PAI-1, HER-2, and VEGF in the serum of ovarian cancer patients. Anticancer Res 20:569–572

    CAS  PubMed  Google Scholar 

  28. Hyodo I, Doi T, Endo H, Hosokawa Y, Nishikawa Y, Tanimizu M, Jinno K, Kotani Y (1998) Clinical significance of plasma vascular endothelial growth factor in gastrointestinal cancer. Eur J Cancer 34:2041–2045

    Article  CAS  PubMed  Google Scholar 

  29. Takiuchi H, Hirata I, Kawabe S, Egashira Y, Katsu K (2000) Immunohistochemical expression of vascular endothelial growth factor can predict response to 5-fluorouracil and cisplatin in patients with gastric adenocarcinoma. Oncol Rep 7:841–846

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly A. Teicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keyes, K.A., Mann, L., Cox, K. et al. Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex Multiplex technology. Cancer Chemother Pharmacol 51, 321–327 (2003). https://doi.org/10.1007/s00280-003-0572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-003-0572-5

Keywords

Navigation