Skip to main content
Log in

Soil DNA libraries for anticancer drug discovery

  • Review
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Soil has the largest population of microbes of any habitat, but only about 0.3% of soil microbes are cultivable with current techniques. Cultured soil microbes have been an incredibly productive source of drugs, for example the cancer chemotherapeutics doxorubicin hydrochloride, bleomycin, daunorubicin and mitomycin. Unfortunately, the current yield of new drugs from soil microbes is low due to repeated cultivation of the same small fraction of cultivable microbes. Uncultured soil species represent a tremendous untapped resource of new antineoplastic agents. Methods have recently been developed to access the diversity of secondary metabolites from uncultured soil microbes. Briefly, total DNA is extracted from soil samples, purified, partially digested, and fragments inserted into vectors for expression in readily fermented microbes such as Escherichia coli. Clones expressing enzymatic and antibiotic activities that are encoded by novel sequences have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461

    CAS  PubMed  Google Scholar 

  2. Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609

    CAS  PubMed  Google Scholar 

  3. Brady SF, Clardy J (2000) Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J Am Chem Soc 122:12903

    Article  CAS  Google Scholar 

  4. Brady SF, Chao CJ, Handelsman J, Clardy J (2001) Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org Lett 3:1981

    Article  CAS  PubMed  Google Scholar 

  5. Brosch R, Gordon SV, Billault A, Garnier T, Eiglmeier K, Soravito C, Barrell BG, Cole ST (1998) Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect Immun 66:2221

    CAS  PubMed  Google Scholar 

  6. Bull AT, Goodfellow M, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 46:219

    Article  CAS  PubMed  Google Scholar 

  7. Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573

    CAS  PubMed  Google Scholar 

  8. Burgmann H, Pesaro M, Widmer F, Zeyer J (2001) A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods 45:7

    Article  CAS  PubMed  Google Scholar 

  9. Bycroft BW (1988) Dictionary of antibiotics and related substances. Chapman and Hall, University Press, Cambridge, UK

  10. Chater KF, Bruton CJ (1985) Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J 4:1893

    CAS  PubMed  Google Scholar 

  11. Christian MC, Pluda JM, Ho PTC, Arbuck SG, Murgo AJ, Sausville EA (1997) Promising new agents under development by the Division of Cancer Treatment, Diagnosis, and Centers of the National Cancer Institute. Semin Oncol 24:219

    Google Scholar 

  12. Clark AM (1996) Natural products as a resource for new drugs. Pharm Res 13:1133

    Article  CAS  PubMed  Google Scholar 

  13. Cragg GM, Newman DJ (2000) Antineoplastic agents from natural sources: achievements and future directions. Exp Opin Invest Drugs 9:2783

    CAS  Google Scholar 

  14. Distler J, Braun C, Ebert A, Piepersberg W (1987) Gene cluster for streptomycin biosynthesis in Streptomyces griseus: analysis of a central region including the major resistance gene. Mol Gen Genet 208:204

    CAS  PubMed  Google Scholar 

  15. Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252:675

    CAS  PubMed  Google Scholar 

  16. Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:1

    Article  PubMed  Google Scholar 

  17. Gillespie DE, Rondon MR, Handelsman J (2004) Metagenomic libraries from uncultured microorganisms. In: Osborn AM (ed) Molecular microbial ecology. BIOS Scientific Publishers, Oxford (in press)

  18. Hammond PM (1995) Described and estimated species numbers: an objective assessment of current knowledge. In: Microbial diversity and ecosystem function: proceedings of the IUBS/IUMS workshop, Egham, UK. University Press, Cambridge, UK, p 29

  19. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245

    CAS  PubMed  Google Scholar 

  20. Handelsman J, Liles M, Mann D, Riesenfeld C, Goodman RM (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Methods Microbiol 33:241

    CAS  Google Scholar 

  21. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641

    Google Scholar 

  22. Henne A, Daniel R, Schmitz RA, Gottschalk G (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65:3901

    CAS  PubMed  Google Scholar 

  23. Henne A, Schmitz RA, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113

    CAS  PubMed  Google Scholar 

  24. Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703

    CAS  Google Scholar 

  25. Hopwood DA (1999) Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology 145:2183

    CAS  PubMed  Google Scholar 

  26. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765

    CAS  PubMed  Google Scholar 

  27. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366

    CAS  PubMed  Google Scholar 

  28. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127

    Article  CAS  PubMed  Google Scholar 

  29. Khosla C (2000) Natural product biosynthesis: a new interface between enzymology and medicine. J Org Chem 65:8127

    Article  CAS  PubMed  Google Scholar 

  30. Liles MR, Manske BF, Bintrim SB, Handelsman J, Goodman RM (2003) A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol 69:2684

    Article  CAS  PubMed  Google Scholar 

  31. Lomovskaya N, Doi-Katayama Y, Filippini S, Nastro C, Fonstein L, Gallo M, Colombo AL, Hutchinson CR (1998) The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. J Bacteriol 180:2379

    CAS  PubMed  Google Scholar 

  32. MacNeil IA, Tiong CL, Minor C, August PR, Grossman TH, Loiacono KA, Lynch BA, Phillips T, Narula S, Sundaramoorthi R, Tyler A, Aldredge T, Long H, Gilman M, Holt D, Osburne MS (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3:301

    CAS  PubMed  Google Scholar 

  33. Majernik A, Gottschalk G, Daniel R (2001) Screening of environmental DNA libraries for the presence of genes conferring Na+(Li+)/H+ antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol 183:6645

    Article  CAS  PubMed  Google Scholar 

  34. Martín JF (1992) Clusters of genes for the biosynthesis of antibiotics: regulatory genes and overproduction of pharmaceuticals. J Ind Microbiol 9:73

    PubMed  Google Scholar 

  35. Martín JF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43:173

    PubMed  Google Scholar 

  36. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734

    CAS  PubMed  Google Scholar 

  37. Quaiser A, Ochsenreiter T, Klenk H-P, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen CW, Schleper C (2002) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603

    Article  CAS  PubMed  Google Scholar 

  38. Ritz K, Griffiths BS, Torsvik VL, Hendriksen NB (1997) Analysis of soil and bacterioplankton community DNA by melting profiles and reassociation kinetics. FEMS Microbiol Lett 149:151

    Article  CAS  Google Scholar 

  39. Rondon MR, Raffel SJ, Goodman RM, Handelsman J (1999) Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc Natl Acad Sci U S A 96:6451

    Article  CAS  PubMed  Google Scholar 

  40. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541

    CAS  PubMed  Google Scholar 

  41. Sheng Y, Mancino V, Birren B (1995) Transformation of Escherichia coli with large DNA molecules by electroporation. Nucleic Acids Res 23:1990

    CAS  PubMed  Google Scholar 

  42. Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794

    CAS  PubMed  Google Scholar 

  43. Sosio M, Giusino FA, Cappellano C, Bossi E, Puglia AM, Donadio S (2000) Artificial chromosomes for antibiotic-producing actinomycetes. Nat Biotechnol 18:343

    CAS  PubMed  Google Scholar 

  44. Stackebrandt E, Liesack W, Goebel BM (1993) Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7:232

    CAS  PubMed  Google Scholar 

  45. Steffan RJ, Goksøyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appl Environ Microbiol 54:2908

    CAS  PubMed  Google Scholar 

  46. Stein JL, Marsh TL, Wu KY, Shizuya H, DeLong EF (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol 178:591

    CAS  PubMed  Google Scholar 

  47. Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782

    CAS  PubMed  Google Scholar 

  48. Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17:170

    Google Scholar 

  49. Van den Hondel, CAMJJ, Punt PJ, van Gorcom RFM (1991) Heterologous gene expression in filamentous fungi. In: Bennett JW, Lasure LL (eds) More gene manipulations in fungi. Academic Press, San Diego, p 396

  50. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578

    Article  CAS  PubMed  Google Scholar 

  51. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316

    CAS  PubMed  Google Scholar 

  52. Zhou J, Davey ME, Figueras JB, Rivkina E, Gillichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143:3913

    CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Professor G.R. Pettit, who pioneered another productive source of antineoplastic agents, marine natural products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin K. Pettit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettit, R.K. Soil DNA libraries for anticancer drug discovery. Cancer Chemother Pharmacol 54, 1–6 (2004). https://doi.org/10.1007/s00280-004-0771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0771-8

Keywords

Navigation