Skip to main content

Advertisement

Log in

Antiangiogenic and antiproliferative effects of substituted-1,3,4-oxadiazole derivatives is mediated by down regulation of VEGF and inhibition of translocation of HIF-1α in Ehrlich ascites tumor cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

1,3,4-Oxadiazoles are an important class of heterocyclic compounds, which play a pivotal role in various pharmaceutical applications. Here, we investigated the antiangiogenic and antiproliferative effects of the derivatives and explored its mechanism of action on EAT cells.

Methods

The cytotoxic effect of the derivatives on EAT and HEK293 cells was assessed by MTT assay. Effect of the derivatives on ALP activity and proliferation was measured. Swiss albino mice transplanted with EAT cells were used as a model system to study the effect of the derivatives in vivo. Inhibition of angiogenesis in mice peritoneum, CAM and Cornea of the rat were studied. Finally, the effects on VEGF gene expression, HIF-1α translocation and cell cycle arrest were determined.

Results

The IC50 range for growth inhibition of EAT cells was found to be 140–175 μM. In contrast normal HEK293 cells were resistant to the derivatives at this range. Treatment with derivatives in vivo was demonstrated by the down regulation of VEGF in EAT cells and inhibition of blood vessels formation in mice peritoneum, CAM and cornea of rat, indicating the potent angioinhibitory effect of the derivatives. VEGF promoter-luciferase reporter gene expression analysis showed suppression of VEGF gene expression in vitro. The derivatives proved to be potent antiproliferative agents as shown by FACS analysis and decreased ALP activity. Furthermore, expression of HIF-1α was also down regulated by derivatives by repressing its nuclear translocation.

Conclusions

Oxadiazole derivatives are strong bioactive compounds with antiangiogenic and antiproliferative potential both in vitro and in vivo. We postulate that diminished HIF-1α nuclear presence in oxadiazole treated EAT cells could be responsible for decreased VEGF expression and antiangiogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karamysheva AF (2008) Mechanism of angiogenesis. Biochemistry (Mosc) 73(7):751–762

    Article  CAS  Google Scholar 

  2. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    PubMed  CAS  Google Scholar 

  3. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  4. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  5. Folkman S, Chesney M (1997) Grief Vancouver conference review. AIDS Care 9:39–43

    PubMed  CAS  Google Scholar 

  6. Mahabeleshwar GH, Byzova TV (2007) Angiogenesis in melanoma. Semin Oncol 34:555–565

    Article  PubMed  CAS  Google Scholar 

  7. Goh PP, Sze DM, Roufogalis BD (2007) Molecular and cellular regulators of cancer angiogenesis. Curr Cancer Drug Targets 7(8):743–758

    Article  PubMed  CAS  Google Scholar 

  8. Ding YT, Kumar S, Yu DC (2008) The role of endothelial progenitor cells in tumor vasculogenesis. Pathobiology 75(5):265–273

    Article  PubMed  CAS  Google Scholar 

  9. Inser JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Investig 103:1231–1236

    Article  Google Scholar 

  10. Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2008) The role of vascular endothelial growth factor in wound healing. J Surg Res. doi:10.1016/j.jss.2008.04.023

  11. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814

    Article  PubMed  CAS  Google Scholar 

  12. Gasparini G, Harris AL (1995) Clinical implications of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol 13:765–782

    PubMed  CAS  Google Scholar 

  13. Stoelcker B, Echtenacher B, Weich HA, Sztajer H, Hcklin DJ, Mannel DN (2000) VEGF/Flk-1 interaction, a requirement for malignant ascites recurrence. J Interferon Cytokine Res 20:511–517

    Article  PubMed  CAS  Google Scholar 

  14. Mesiano S, Ferrara N, Jaffe RB (1998) Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol 153:1249–1256

    PubMed  CAS  Google Scholar 

  15. Yukita A, Asano M, Okamoto T, Mizutani S, Suzuki H (2000) Suppression of ascites formation and re-accumulation associated with human ovarian cancer by anti-VPF monoclonal antibody invivo. Anticancer Res 20:445–454

    Google Scholar 

  16. Brahimi-Horn C, Pouyssegur J (2006) The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer 93:E73–E80

    PubMed  Google Scholar 

  17. Sivridis E, Giatromanolaki A, Gatter KC, Harris AL, Koukourakis MI (2002) Association of hypoxia-inducible factors 1α and 2α with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer 95:1055–1063

    Article  PubMed  CAS  Google Scholar 

  18. Cosse JP, Michiels C (2008) Tumor hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem 8(7):790–797

    PubMed  CAS  Google Scholar 

  19. Kung AL, Wang S, Klco JM, Kalein WG, Livingston DM (2000) Supression of tumor growth through disruption of hypoxia inducible transcription. Nat Med 6:1335–1340

    Article  PubMed  CAS  Google Scholar 

  20. Brahimi-Horn C, Chiche J, Pouyssegur J (2007) Hypoxia and cancer. J Mol Med 85:1301–1307

    Article  PubMed  Google Scholar 

  21. Gekeler V, Epple Kleyman J, Probst H (1993) Selective synchronous activation of early S-phase replicons of Ehrlic ascites cells. Mol Cell Biol 13:5020–5033

    PubMed  CAS  Google Scholar 

  22. Probst H, Schiffer H, Gekeler V, Kienzle-Pfeilsticker H, Stropp U, Stotzer KE, Frenzel-Stotzer I (1998) Oxygen dependent regulation of DNA synthesis and growth of Ehrlich ascites tumor cells in vitro and in vivo. Cancer Res 48:2053–2060

    Google Scholar 

  23. Buchler P, Reber HA, Buchler MW, Friess H, Lavey HRS, Hines OJ (2004) Antiangiogenic activity of genistien in pancreatic carcinoma cell is mediated by the inhibition of Hypoxia inducible factor-1 and the down regulation of VEGF gene expression. Cancer 100:201–210

    Article  PubMed  CAS  Google Scholar 

  24. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxic mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379:88–91

    Article  PubMed  CAS  Google Scholar 

  25. Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurement reveal a lack of correlation. Nat Med 3:177–182

    Article  PubMed  CAS  Google Scholar 

  26. Inoue M, Mukai M, Hamanaka Y, Tatsuta M, Hiraoka M, Kondoh S (2004) Targeting hypoxic cancer cells with a protein prodrug is effective in experimental malignant ascites. Int J Oncol 25:713–720

    PubMed  CAS  Google Scholar 

  27. Noonan DM, Benelli R, Albini A (2007) Angiogenesis and cancer prevention: a vision. Recent Results Cancer Res 174:219–224

    Article  PubMed  CAS  Google Scholar 

  28. Khan MTH, Choudhari MI, Khan KM, Rani M, Atta-ur-Rahman (2005) Structure-activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues. Bioorg Med Chem 13:3385–3395

    Article  PubMed  CAS  Google Scholar 

  29. Holla BS, Gonsalves R, Shenoy S (2000) Synthesis and antibacterial studies of a new series of 1,2-bis(1,3,4-oxadiazole-2-yl)ethanes and 1,2-bis(4-amino-1,2,4-triazol-3-yl)ethanes. Eur J Med Chem 35:267–271

    Article  PubMed  CAS  Google Scholar 

  30. Sahin G, Palaska E, MelikeEkizoglu M, Ozalp M (2002) Synthesis and antimicrobial activity of some 1, 3, 4-oxadiazole derivatives. II Farmaco 57:539–545

    Article  CAS  Google Scholar 

  31. Macaev F, Rusu G, Pogrebnoi S, Gudima A, Stingaci E, Vlad L, Shvets N, Kandemirli F, Dimoglo A, Reynolds R (2005) Synthesis of novel 5-aryl-2-thiol-1,3,4-oxadiazoles and the study of their structure-anti-mycobacterial activities. Bioorg Med Chem 13:4842–4850

    Article  PubMed  CAS  Google Scholar 

  32. Zou XJ, Lai LH, Jin GY, Zhang ZX (2002) Synthesis of biological activity of 1,3,4-oxadiazole-substituted pyridazinone. J Agric Food Chem 50:3757–3760

    Article  PubMed  CAS  Google Scholar 

  33. Palaska E, Sahin G, Kelicen P, Durlu NT, Altinok G (2002) Synthesis and antimicrobial activity of some 1,3,4-oxadiazole derivatives. Farmaco 57:101–107

    Article  PubMed  CAS  Google Scholar 

  34. Amir M, Shikha K (2004) Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. Eur J Med Chem 39:535–545

    Article  PubMed  CAS  Google Scholar 

  35. Zarghi A, Sayyed A, Tabatabai M, Faizi A, Ahadian P, Navabi V, Zanganeh A, Shafiee A (2005) Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles. Bioorg Med Chem Lett 15:1863–1865

    Article  PubMed  CAS  Google Scholar 

  36. Zheng X, Li Z, Wang Y, Chen W, Huang O, Liu C, Song C (2003) Synthesis and insecticidal activities of novel 2,5-disubstituted 1,3,4-oxadiazoles. J Fluor Chem 123:163–169

    Article  CAS  Google Scholar 

  37. Meyer HR (1976) Chem Abstr 85 125807 [Swiss Patent (1976) 577, 536]

  38. Hill J (1994) In: Katritzky AR (ed) Comprehensive heterocyclic chemistry. Pergamon Press, Oxford 427(4)

  39. Goankar SL, Rai KML, Prabhuswamy B (2006) Synthesis and antimicrobial studies of a new series of 2-[4-[2-(5-ethylpyridin-2-yl) ethoxy] phenyl]-5-substituted-1,3,4-oxadiazoles. Eur J Med Chem 41:841–846

    Article  Google Scholar 

  40. Je JJ, Shin HT, Chung SH, Lee JS, Kim SS, Shin HD, Jang MH, Kim YJ, Chung JH, Kim EH, Kim CJ (2002) Protective effects of Wuyaoshunqisan against H2O2-induced apoptosis on hippocampal cell line HiB5. Am J Chin Med 30:561–570

    Article  PubMed  Google Scholar 

  41. Neutra M, Louvard D (1989) Functional epithelial cells in culture. Alan R Liss Inc., New York, pp 363–368

    Google Scholar 

  42. Giridharan P, Somasundaram ST, Perumal K, Vishwakarma NP, Velmurugan R (2002) Novel substituted methylenedioxylignan suppresses proliferation of cancer cells by inhibiting telomerase and activation of c-myc and caspases leading to apoptosis. Br J Cancer 98–105

  43. Mahadesh B, Salimath BP (2005) Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF-kB and caspase activated DNase. Mol Cell Biochem 57:273–278

    Google Scholar 

  44. Gururaj AE, Belakavadi M, Salimath BP (2003) Antiangiogenic effects of butyric acid involves inhibition of VEGF/KDR gene expression and endothelial cell proliferation. Mol Cell Biochem 243:107–112

    Article  PubMed  CAS  Google Scholar 

  45. Polverini P, Bouck N, Raztinejad F (1991) Assay and Purification of naturally occurring inhibitor of angiogenesis. Methods Enzymol 198:440–450

    Article  PubMed  CAS  Google Scholar 

  46. Folkman J (2000) Tumor angiogenesis. In: Holland JF, Frei E III, Bast RC Jr, Kufe DW, Pollock RE, Weichselbanm RR (eds) Cancer medicine, 5th edn. Decker Inc, Canada, BC, pp 132–152

    Google Scholar 

  47. Folkman J (2001) Angiogenesis. In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL (eds) Harrison’s textbook of internal medicine 15th Ed. McGraw-Hill, New York, pp 517–530

    Google Scholar 

  48. Luo JC, Yamaguchi S, Shinkai A, Shitara K, Shibuya M (1998) Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Res 58:2652–2660

    PubMed  CAS  Google Scholar 

  49. Nagy JA, Morgan ES, Herzberg KT, Meyers MS, Yeo KT, Sioussat TM (1995) Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermiability, and ascites fluid accumulation. Cancer Res 55:360–368

    PubMed  CAS  Google Scholar 

  50. Crawford Y, Ferrara N (2009) VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res 335(1):261–269

    Article  PubMed  CAS  Google Scholar 

  51. Melillo G (2007) Targeting hypoxia cell signalling for cancer therapy. Cancer Metastasis Rev 26:341–352

    Article  PubMed  CAS  Google Scholar 

  52. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen, and nutrient supply and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  53. Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M (2003) Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 94:1021–1028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author (AK) thanks University Grant Commission (UGC), New Delhi, India, for the financial support. The authors express their sincere gratitude to University of Mysore, Mysore, India for the laboratory facility. There is no conflict of interest among the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Lokanatha Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., D’Souza, S.S., Mysore Nagaraj, S.R. et al. Antiangiogenic and antiproliferative effects of substituted-1,3,4-oxadiazole derivatives is mediated by down regulation of VEGF and inhibition of translocation of HIF-1α in Ehrlich ascites tumor cells. Cancer Chemother Pharmacol 64, 1221–1233 (2009). https://doi.org/10.1007/s00280-009-0992-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0992-y

Keywords

Navigation