Skip to main content

Advertisement

Log in

Antitumor agent PX-12 inhibits HIF-1α protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Thioredoxin-1 (Trx-1) redox signaling regulates multiple aspects of cell growth and survival, and elevated tumor levels of Trx-1 have been associated with decreased patient survival. PX-12, an inhibitor of Trx-1 currently in clinical development, has been found to decrease tumor levels of the HIF-1α transcription factor. SSAT1 has been reported to bind to HIF-1α and RACK1, resulting in oxygen-independent HIF-1 ubiquitination and degradation. SSAT2, a related protein, stabilizes the interaction of the VHL protein and elongin C with HIF-1 leading to oxygen-dependent HIF-1α ubiquitination and degradation. We investigated the effects of PX-12 and Trx-1 on SSAT1, SSAT2, and inhibition of HIF-1α.

Methods

A panel of cell lines was treated with PX-12 to investigate its effects on SSAT1 and SSAT2 expression, and on HIF-1α protein levels. We also evaluated the regulation of SSAT1 through the Nrf2 and PMF-1, two trans-acting transcription factors.

Results

We found that PX-12 increased nuclear Nrf2 activity and antioxidant response element binding. PX-12 also increased the expression of SSAT1 but not SSAT2 in a PMF-1-dependent manner that was independent of Trx-1. Inhibition of Nrf2 or PMF-1 prevented the increase in SSAT1 caused by PX-12.

Conclusions

The results show that PX-12, acting independently of Trx-1, increases nuclear Nrf2, which interacts with PMF-1 to increase the expression of SSAT1. The degradation of HIF-1α that results from binding with SSAT1 may explain the decrease in HIF-1α caused by PX-12 and could contribute to the antitumor activity of PX-12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARE:

Antioxidant response element

Ask-1:

Apoptosis signal–regulating kinase-1

HIF-1α:

Hypoxia-inducible factor-1alpha

Keap1:

Kelch-like ECH-associated protein 1

NAD(P)H:

Nicotinamide adenine dinucleotide phosphate oxidase

NQO1:

NADPH dehydrogenase, quinone 1

Nrf2:

Nuclear factor erythroid-derived 2(NF-E2)–related factor 2

PMF-1:

Polyamine modulated factor-1

PRE:

Positive regulatory element

PTEN:

Phosphatase and tensin homolog

pVHL:

Von Hippel-Lindau protein

PX-12:

1-Methylpropyl 2-imidazolyl disulfide

RACK1:

Receptor for activated C kinase 1

RT–PCR:

Reverse transcription-polymerase chain reaction

siRNA:

Small interfering RNA

SSAT1:

Spermidine/spermine N(1)-acetyltransferase 1

SSAT2:

Spermidine/spermine N(1)-acetyltransferase 2

Trx-1:

Thioredoxin-1

References

  1. Powis G, Kirkpatrick DL (2007) Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol 7:392–397

    Article  PubMed  CAS  Google Scholar 

  2. Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH (2005) 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med 11:571–578

    Article  PubMed  CAS  Google Scholar 

  3. Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30:421–455

    Article  PubMed  CAS  Google Scholar 

  4. Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO 17:2596–2606

    Article  CAS  Google Scholar 

  5. Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G (2004) Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN’s lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN’s tumor suppressor activity. Arch Biochem Biophys 429:123–133

    Article  PubMed  CAS  Google Scholar 

  6. Kakolyris S, Giatromanolaki A, Koukourakis M et al (2001) Thioredoxin expression is associated with lymph node status and prognosis in early operable non-small cell lung cancer. Clin Cancer Res 7:3087–3091

    PubMed  CAS  Google Scholar 

  7. Raffel J, Bhattacharyya AK, Gallegos A et al (2003) Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. J Lab Clin Med 142:46–51

    Article  PubMed  CAS  Google Scholar 

  8. Ungerstedt JS, Sowa Y, Xu WS et al (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Nat Acad Sci USA 102:673–678

    Article  PubMed  CAS  Google Scholar 

  9. Kawahara N, Tanaka T, Yokomizo A et al (1996) Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin. Cancer Res 56:5330–5333

    PubMed  CAS  Google Scholar 

  10. Welsh SJ, Bellamy WT, Briehl MM, Powis G (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62:5089–5095

    PubMed  CAS  Google Scholar 

  11. Husbeck B, Stringer DE, Gerner EW, Powis G (2003) Increased thioredoxin-1 inhibits SSAT expression in MCF-7 human breast cancer cells. Biochem Biophys Res Commun 306:469–475

    Article  PubMed  CAS  Google Scholar 

  12. Pegg AE (2008) Spermidine/spermine-N1-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 294:E995–E1010

    Article  PubMed  CAS  Google Scholar 

  13. Wang Y, Devereux W, Stewart TM, Casero RA Jr (2001) Characterization of the interaction between the transcription factors human polyamine modulated factor (PMF-1) and NF-E2-related factor 2 (Nrf-2) in the transcriptional regulation of the spermidine/spermine N1-acetyltransferase (SSAT) gene. Biochem J 355:45–49

    Article  PubMed  CAS  Google Scholar 

  14. Baek JH, Liu YV, McDonald KR, Wesley JB, Zhang H, Semenza GL (2007) Spermidine/spermine N(1)-acetyltransferase-1 binds to hypoxia-inducible factor-1alpha (HIF-1alpha) and RACK1 and promotes ubiquitination and degradation of HIF-1alpha. J Biol Chem 282:33358–33366

    Article  PubMed  CAS  Google Scholar 

  15. Chen Y, Vujcic S, Liang P, Diegelman P, Kramer DL, Porter CW (2003) Genomic identification and biochemical characterization of a second spermidine/spermine N1-acetyltransferase. Biochem J 373:661–667

    Article  PubMed  CAS  Google Scholar 

  16. Chen Y, Kramer DL, Jell J, Vujcic S, Porter CW (2003) Small interfering RNA suppression of polyamine analog-induced spermidine/spermine n1-acetyltransferase. Mol Pharmacol 64:1153–1159

    Article  PubMed  CAS  Google Scholar 

  17. Coleman CS, Stanley BA, Jones AD, Pegg AE (2004) Spermidine/spermine-N1-acetyltransferase-2 (SSAT2) acetylates thialysine and is not involved in polyamine metabolism. Biochem J 384:139–148

    Article  PubMed  CAS  Google Scholar 

  18. Vogel NL, Boeke M, Ashburner BP (2006) Spermidine/spermine N1-acetyltransferase 2 (SSAT2) functions as a coactivator for NF-kappaB and cooperates with CBP and P/CAF to enhance NF-kappaB-dependent transcription. Biochim Biophys Acta 1759:470–477

    PubMed  CAS  Google Scholar 

  19. Baek JH, Liu YV, McDonald KR et al (2007) Spermidine/spermine-N1-acetyltransferase 2 is an essential component of the ubiquitin ligase complex that regulates hypoxia-inducible factor 1alpha. J Biol Chem 282:23572–23580

    Article  PubMed  CAS  Google Scholar 

  20. Kirkpatrick DL, Kuperus M, Dowdeswell M et al (1998) Mechanisms of inhibition of the thioredoxin growth factor system by antitumor 2-imidazolyl disulfides. Biochem Pharmacol 55:987–994

    Article  PubMed  CAS  Google Scholar 

  21. Ramanathan RK, Dragovich T, Richards D, Stephenson J, Pestano L, Hiscox A, Leos R, Chow S, Millard J, Kirkpatrick L (2009) Results from phase Ib studies of PX-12, a thioredoxin inhibitor in patients with advanced solid malignancies. J Clin Oncol 27:15s (suppl; abstr 2571)

    Article  Google Scholar 

  22. Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL, Powis G (2003) The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol Cancer Ther 2:235–243

    PubMed  CAS  Google Scholar 

  23. Jordan BF, Runquist M, Raghunand N et al (2005) The thioredoxin-1 inhibitor 1-methylpropyl 2-imidazolyl disulfide (PX-12) decreases vascular permeability in tumor xenografts monitored by dynamic contrast enhanced magnetic resonance imaging. Clin Cancer Res 11:529–536

    PubMed  CAS  Google Scholar 

  24. Baker AF, Dragovich T, Tate WR et al (2006) The antitumor thioredoxin-1 inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma. J Lab Clin Med 147:83–90

    Article  PubMed  CAS  Google Scholar 

  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  26. Cullinan S, Zhang D, Hannink M et al (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209

    Article  PubMed  CAS  Google Scholar 

  27. Paddenberg R, Goldenberg A, Faulhammer P, Braun-Dullaeus RC, Kummer W (2003) Mitochondrial complex II is essential for hypoxia-induced ROS generation and vasoconstriction in the pulmonary vasculature. Adv Exp Med Biol 536:163–169

    Article  PubMed  CAS  Google Scholar 

  28. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207

    Article  PubMed  CAS  Google Scholar 

  29. Jaiswal AK (2004) Regulation of antioxidant response element-dependent induction of detoxifying enzyme synthesis. Methods Enzymol 378:221–238

    Article  PubMed  CAS  Google Scholar 

  30. Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD (2008) Dual roles of Nrf2 in cancer. Pharmacol Res 58:262–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank LeeAnn Chastain for editorial assistance. The research was supported by National Institutes of Health grants CA129616, CA109552, and CA077204.

Conflict of interest

GP is a stockholder in Oncothyreon the company that owns PX-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yon Hui Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.H., Coon, A., Baker, A.F. et al. Antitumor agent PX-12 inhibits HIF-1α protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase. Cancer Chemother Pharmacol 68, 405–413 (2011). https://doi.org/10.1007/s00280-010-1500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1500-0

Keywords

Navigation