Skip to main content
Log in

Use of ELISA with Antiexopolysaccharide Antibodies to Evaluate Wheat-Root Colonization by the Rhizobacterium Paenibacillus polymyxa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Enzyme-linked immunosorbent assay with rabbit polyclonal antibodies developed to isolated exopolysaccharide of Paenibacillus polymyxa 1465 was used to evaluate the colonization of wheat-seedling roots by this bacterium. The assay conditions were optimized for detection of the P. polymyxa exopolysaccharide determinants forming part of the samples used (homogenates of inoculated roots). The dynamics of the immunoenzymatic revealing of specific polysaccharidic antigenic determinants in the samples’ composition correlated with an increase in P. polymyxa numbers on the roots found by estimation of colony-forming units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test: proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260

    Article  CAS  PubMed  Google Scholar 

  2. Bent E, Breuil C, Enebak SA et al (2002) Surface colonization of lodgepole pine (Pinus contorta var. lativolia [Dougl. Engelm.]) roots by Pseudomonas fluorescens and Paenibacillus polymyxa under gnotobiotic conditions. Plant Soil 241:187–196

    Article  CAS  Google Scholar 

  3. Bezzate S, Steinmetz M, Aymerich S (1994) Cloning, sequencing, and disruption of a levanase gene of Bacillus polymyxa CF43. J Bacteriol 176:2177–2183

    CAS  PubMed  Google Scholar 

  4. Bezzate S, Aymerich S, Chambert R et al (2000) Disruption of the Paenibacillus polymyxa levansucrose gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2:333–342

    Article  CAS  PubMed  Google Scholar 

  5. Gamalero E, Lingua G, Berta G et al (2003) Methods for studying root colonization by introduced beneficial bacteria. Agronomie 23:407–418

    Article  CAS  Google Scholar 

  6. Haggag WM (2007) Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. Afr J Biotechnol 6:1568–1577

    CAS  Google Scholar 

  7. Haggag WM, Timmusk S (2008) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104:961–969

    Article  CAS  PubMed  Google Scholar 

  8. Hebbar KP, Gueniot B, Heyraud A et al (1992) Characterization of exopolysaccharides produced by rhizobacteria. Appl Microbiol Biotechnol 38:248–253

    Article  CAS  Google Scholar 

  9. Jung H-K, Hong J-H, Park S-C et al (2007) Production and physicochemical characterization of β-glucan by Paenibacillus polymyxa JB115. Biotechnol Bioprocess Eng 12:713–719

    Article  CAS  Google Scholar 

  10. Krasov AI, Popova IA, Filip’echeva YuA et al (2009) Application of enzyme immunoassay for detection of the nitrogen-fixing bacteria of the genus Azospirillum in soil suspensions. Microbiology (Moscow) 78:598–602

    CAS  Google Scholar 

  11. Lee IY, Seo WT, Kim GJ et al (1997) Optimization of fermentation conditions for production of exopolysaccharide by Bacillus polymyxa. Bioprocess Eng 16:71–75

    Article  CAS  Google Scholar 

  12. Matora AV, Ignatova EN, Yegorenkova IV et al (1992) Bacterial polysaccharide polymyxan 88A. Main characteristics and possible applications. Prikl Biokhim Mikrobiol 28:731–737 (in Russian)

    CAS  PubMed  Google Scholar 

  13. McSpadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus spp in agricultural systems. Phytopathology 94:1252–1258

    Article  CAS  PubMed  Google Scholar 

  14. Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246

    CAS  Google Scholar 

  15. Muratova A, Hübner Th, Tischer S et al (2003) Plant–rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Int J Phytorem 5:137–151

    Article  CAS  Google Scholar 

  16. Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90:3–16

    Article  CAS  Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  18. Sheludko AV, Kulibyakina OV, Shirokov AA et al (2008) The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense. Microbiology (Moscow) 77:313–317

    CAS  Google Scholar 

  19. Shishido M, Breuil C, Chanway CP (1999) Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiol Ecol 29:191–196

    Article  CAS  Google Scholar 

  20. Tarrand JJ, Krieg NR, Döbereiner JA (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  CAS  PubMed  Google Scholar 

  21. Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  22. Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed  Google Scholar 

  23. Timmusk S, van West P, Gow NAR et al (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481

    Article  CAS  PubMed  Google Scholar 

  24. Vasilyev NV, Lutsik NB, Paliy GK et al (1984) Biokhimiya i immunologiya mikrobnykh polisakharidov (Biochemistry and Immunology of Microbial Polysaccharides). Izdatel’stvo Tomskogo universiteta, Tomsk (in Russian)

    Google Scholar 

  25. Yegorenkova IV, Konnova SA, Sachuk VN et al (2001) Azospirillum brasilense colonisation of wheat roots and the role of lectin–carbohydrate interactions in bacterial adsorption and root-hair deformation. Plant Soil 231:275–282

    Article  CAS  Google Scholar 

  26. Yegorenkova IV, Tregubova KV, Matora LYu et al (2008) Composition and immunochemical characteristics of exopolysaccharides from the rhizobacterium Paenibacillus polymyxa 1465. Microbiology (Moscow) 77:553–558

    CAS  Google Scholar 

  27. Zamudio M, Bastarrachea F (1994) Adhesiveness and root hair deformation capacity of Azospirillum strains for wheat seedlings. Soil Biol Biochem 26:791–797

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Mr. Dmitry N. Tychinin (this institute) for translating the original manuscript into English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Yegorenkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yegorenkova, I.V., Tregubova, K.V., Matora, L.Y. et al. Use of ELISA with Antiexopolysaccharide Antibodies to Evaluate Wheat-Root Colonization by the Rhizobacterium Paenibacillus polymyxa . Curr Microbiol 61, 376–380 (2010). https://doi.org/10.1007/s00284-010-9622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9622-5

Keywords

Navigation