Skip to main content

Advertisement

Log in

Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A high variety of plants that are used for food production contain esterified hydroxycinnamic acids. As their free forms display several benefits, like an enhanced absorption in human intestinal tract, anti-oxidative and anti-carcinogenic effects, an improved protein solubility and reduced discoloration, the microbial ability to cleave the ester bond is highly desired. In order to examine potential fermentation strains for this purpose, six different lactic acid bacteria and one bifidobacterial strain were screened for their ability to degrade esterified hydroxycinnamic acids because these strains are commonly used for fermentation of plant-based foods. Moreover, their cinnamoyl esterase activity was examined by molecular biological analyses. The enzymes were heterologously expressed in Escherichia coli, purified and biochemically characterized. The purified esterases with a molecular mass around 27–29 kDa had their optimum predominantly between pH 7 and 8 at 20–30 °C. Bifidobacterium animalis subsp. lactis, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus fermentum displayed activities against a broad substrate range (methyl caffeate, methyl trans-p-coumarate, chlorogenic acid as well as partially ethyl ferulate). Concerning substrate affinity, reaction velocity, thermal and pH stability, Lactobacillus gasseri showed the overall best performance. The herein studied lactic acid- and bifidobacteria are promising for the production of fermented plant-based foods with an increased quality and nutritional value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balachandran C, Duraipandiyan V, Al-Dhabi NA, Balakrishna K, Kalia NP, Rajput VS, Khan IA, Ignacimuthu S (2012) Antimicrobial and antimycobacterial activities of methyl caffeate isolated from Solanum torvum Swartz. Fruit. Indian J Microbiol 52(4):676–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baranowski JD, Nagel CW (1984) Antimicrobial and antioxidant activities of alkyl hydroxycinnamates (alkacins) in model systems and food-products. Can Inst Food Sci Technol J 17(2):79–85

    Article  CAS  Google Scholar 

  3. Bau HM, Mohtadi-Nia DJ, Mejean L, Debry G (1983) Preparation of colorless sunflower protein products: effect of processing on physicochemical and nutritional properties. J Am Oil Chem Soc 60(6):1141–1148. doi:10.1007/BF02671343

    Article  CAS  Google Scholar 

  4. Bel-Rhlid R, Page-Zoerkler N, Fumeaux R, Ho-Dac T, Chuat JY, Sauvageat JL, Raab T (2012) Hydrolysis of chicoric and caftaric acids with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model. J Agric Food Chem 60(36):9236–9241. doi:10.1021/jf301317h

    Article  CAS  PubMed  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  6. Brezillon C, Kroon PA, Faulds CB, Brett GM, Williamson G (1996) Novel ferulic acid esterases are induced by growth of Aspergillus niger on sugarbeet pulp. Appl Microbiol Biotechnol 45(3):371–376

    Article  CAS  Google Scholar 

  7. Castanares A, McCrae SI, Wood TM (1992) Purification and properties of a feruloyl/ϱ-coumaroyl esterase from the fungus Penicillium pinophilum. Enzyme Microb Technol 14(11):875–884. doi:10.1016/0141-0229(92)90050-X

    Article  CAS  Google Scholar 

  8. Cater CM, Gheyasuddin S, Mattil KF (1972) The effect of chlorogenic, caffeic and quinic acids on the solubility and color of proteins isolates, especially from sunflower seed. Cereal Chem 49:508–514

    CAS  Google Scholar 

  9. Chen YR, Usui S, Queener SW, Yu CA (1995) Purification and properties of ap-nitrobenzyl esterase from Bacillus subtilis. J Ind Microbiol 15(1):10–18. doi:10.1007/BF01570007

    Article  Google Scholar 

  10. Clifford MN (2000) Chlorogenic acids and other cinnamates—nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80(7):1033–1043. doi:10.1002/(SICI)1097-0010(20000515)

    Article  CAS  Google Scholar 

  11. Couteau D, McCartney AL, Gibson GR, Williamson G, Faulds CB (2001) Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90(6):873–881. doi:10.1046/j.1365-2672.2001.01316.x

    Article  CAS  PubMed  Google Scholar 

  12. Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63(6):647–652. doi:10.1007/s00253-003-1476-3

    Article  CAS  PubMed  Google Scholar 

  13. Donaghy J, Kelly PF, McKay AM (1998) Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl Microbiol Biotechnol 50(2):257–260. doi:10.1007/s002530051286

    Article  CAS  PubMed  Google Scholar 

  14. Esteban-Torres M, Reveron I, Mancheno JM, de las Rivas B, Munoz R (2013) Characterization of a Feruloyl Esterase from Lactobacillus plantarum. Appl Environ Microbiol 79(17):5130–5136. doi:10.1128/Aem.01523-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falconnier B, Lapierre C, Lesage-Meessen L, Yonnet G, Brunerie P, Colonna-Ceccaldi B, Corrieu G, Asther M (1994) Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: identification of metabolic pathways. J Biotechnol 37(2):123–132. doi:10.1016/0168-1656(94)90003-5

    Article  CAS  Google Scholar 

  16. Faulds CB (2010) What can feruloyl esterases do for us? Phytochem Rev 9(1):121–132. doi:10.1007/s11101-009-9156-2

    Article  CAS  Google Scholar 

  17. Faulds CB, Williamson G (1991) The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Microbiology 137(10):2339–2345. doi:10.1099/00221287-137-10-2339

    CAS  Google Scholar 

  18. Faulds CB, Williamson G (1993) Ferulic acid esterase from Aspergillus niger: purification and partial characterization of two forms from a commercial source of pectinase. Biotechnol Appl Biochem 17(3):349–359. doi:10.1111/j.1470-8744.1993.tb00249.x

    CAS  PubMed  Google Scholar 

  19. Faulds CB, Williamson G (1994) Purification and Characterization of a ferulic acid esterase (Fae-Iii) from Aspergillus niger—specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiol-Sgm 140:779–787

    Article  CAS  Google Scholar 

  20. Fritsch C, Heinrich V, Vogel RF, Toelstede S (2016) Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates. Food Microbiol 57:178–186. doi:10.1016/j.fm.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  21. Fry SC (1982) Phenolic components of the primary-cell wall—Feruloylated disaccharides of d-galactose and l-arabinose from spinach polysaccharide. Biochem J 203(2):493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldstone DC, Villas-Bôas SG, Till M, Kelly WJ, Attwood GT, Arcus VL (2010) Structural and functional characterization of a promiscuous feruloyl esterase (Est1E) from the rumen bacterium Butyrivibrio proteoclasticus. Proteins Struct Funct Bioinf 78(6):1457–1469. doi:10.1002/prot.22662

    CAS  Google Scholar 

  23. Guglielmetti S, De Noni I, Caracciolo F, Molinari F, Parini C, Mora D (2008) Bacterial cinnamoyl esterase activity screening for the production of a novel functional food product. Appl Environ Microbiol 74(4):1284–1288

    Article  CAS  PubMed  Google Scholar 

  24. Kanauchi M, Watanabe S, Tsukada T, Atta K, Kakuta T, Koizumi T (2008) Purification and characteristics of feruloyl esterase from Aspergillus awamori G-2 strain. J Food Sci 73(6):C458–C463. doi:10.1111/j.1750-3841.2008.00839.x

    Article  CAS  PubMed  Google Scholar 

  25. Kim J-H, Baik S-H (2015) Properties of recombinant novel cinnamoyl esterase from Lactobacillus acidophilus F46 isolated from human intestinal bacterium. J Mol Catal B Enzym 116:9–15. doi:10.1016/j.molcatb.2015.02.016

    Article  CAS  Google Scholar 

  26. Konishi Y, Kobayashi S (2005) Transepithelial transport of rosmarinic acid in intestinal Caco-2 cell monolayers. Biosci Biotechnol Biochem 69(3):583–591. doi:10.1271/bbb.69.583

    Article  CAS  PubMed  Google Scholar 

  27. Koseki T, Furuse S, Iwano K, Matsuzawa H (1998) Purification and characterization of a feruloylesterase from Aspergillus awamori. Biosci Biotechnol Biochem 62(10):2032–2034. doi:10.1271/bbb.62.2032

    Article  CAS  PubMed  Google Scholar 

  28. Kroon PA, Faulds CB, Ryden P, Robertson JA, Williamson G (1997) Release of covalently bound ferulic acid from fiber in the human colon. J Agric Food Chem 45(3):661–667. doi:10.1021/jf9604403

    Article  CAS  Google Scholar 

  29. Kroon PA, Williamson G (1999) Hydroxycinnamates in plants and food: current and future perspectives. J Sci Food Agric 79(3):355–361. doi:10.1002/(SICI)1097-0010(19990301)79:3<355:AID-JSFA255>3.0.CO;2-G

    Article  CAS  Google Scholar 

  30. Lai KK, Lorca GL, Gonzalez CF (2009) Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Appl Environ Microbiol 75(15):5018–5024. doi:10.1128/Aem.02837-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewington J, Greenaway SD, Spillane BJ (1987) Rapid small-scale preparation of bacterial genomic DNA, suitable for cloning and hybridization analysis. Lett Appl Microbiol 5(3):51–53. doi:10.1111/j.1472-765X.1987.tb01612.x

    Article  CAS  Google Scholar 

  32. Mackenzie CR, Bilous D, Schneider H, Johnson KG (1987) Induction of cellulolytic and xylanolytic enzyme-systems in Streptomyces Spp. Appl Environ Microbiol 53(12):2835–2839

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mandalari G, Bisignano G, Lo Curto RB, Waldron KW, Faulds CB (2008) Production of feruloyl esterases and xylanases by Talaromyces stipitatus and Humicola grisea var. thermoidea on industrial food processing by-products. Bioresour Technol 99(11):5130–5133. doi:10.1016/j.biortech.2007.09.022

    Article  CAS  PubMed  Google Scholar 

  34. Mathew S, Abraham TE (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 24(2–3):59–83. doi:10.1080/07388550490491467

    Article  CAS  PubMed  Google Scholar 

  35. Merkl R, Hradkova I, Filip V, Smidrkal J (2010) Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J Food Sci 28(4):275–279

    CAS  Google Scholar 

  36. Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO (2015) Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J Basic Clin Physiol Pharmacol 26(2):165–170. doi:10.1515/jbcpp-2013-0141

    Article  CAS  PubMed  Google Scholar 

  37. Olthof MR, Hollman PCH, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131(1):66–71

    CAS  PubMed  Google Scholar 

  38. Panagiotou G, Olavarria R, Olsson L (2007) Penicillium brasilianum as an enzyme factory; the essential role of feruloyl esterases for the hydrolysis of the plant cell wall. J Biotechnol 130(3):219–228. doi:10.1016/j.jbiotec.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  39. Raimondi S, Anighoro A, Quartieri A, Amaretti A, Tomás-Barberán FA, Rastelli G, Rossi M (2015) Role of bifidobacteria in the hydrolysis of chlorogenic acid. MicrobiologyOpen 4(1):41–52. doi:10.1002/mbo3.219

    Article  CAS  PubMed  Google Scholar 

  40. Rashamuse KJ, Burton SG, Cowan DA (2007) A novel recombinant ethyl ferulate esterase from Burkholderia multivorans. J Appl Microbiol 103(5):1610–1620. doi:10.1111/j.1365-2672.2007.03394.x

    Article  CAS  PubMed  Google Scholar 

  41. Rawel HM, Rohn S, Kruse H-P, Kroll J (2002) Structural changes induced in bovine serum albumin by covalent attachment of chlorogenic acid. Food Chem 78(4):443–455. doi:10.1016/S0308-8146(02)00155-3

    Article  CAS  Google Scholar 

  42. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Sping Harbor Laboratory Press, New York

    Google Scholar 

  43. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379. doi:10.1016/0003-2697(87)90587-2

    Article  PubMed  Google Scholar 

  44. Schwimmer S (1981) Source book of food enzymology. AVI Pub. Co., Westport

    Google Scholar 

  45. Smith MM, Hartley RD (1983) Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohydr Res 118:65–80. doi:10.1016/0008-6215(83)88036-7

    Article  CAS  Google Scholar 

  46. Szwajgier D (2011) The use of an extracellular ferulic acid esterase from Lactobacillus acidophilus K1 for the release of phenolic acids during mashing. J Inst Brew 117(3):427–434

    Article  CAS  Google Scholar 

  47. Wang XK, Geng X, Egashira Y, Sanada H (2004) Purification and characterization of a feruloyl esterase from the intestinal bacterium Lactobacillus acidophilus. Appl Environ Microbiol 70(4):2367–2372. doi:10.1128/Aem.70.4.2367-2372.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Williamson G, Kroon PA, Faulds CB (1998) Hairy plant polysaccharides: a close shave with microbial esterases. Microbiol-Uk 144:2011–2023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Fraunhofer ATTRACT Fellowship “ProFerment,” the Research Association of the German Food Industry (FEI), the German Federation of Industrial Research Associations “Otto von Guericke” project No. AiF-FV 14492 N and the Canada Research Chairs Program. We are grateful to Michael Nowakowski for his valuable contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias A. Ehrmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritsch, C., Jänsch, A., Ehrmann, M.A. et al. Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria. Curr Microbiol 74, 247–256 (2017). https://doi.org/10.1007/s00284-016-1182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1182-x

Keywords

Navigation