Skip to main content

Advertisement

Log in

Ustiloxin A is Produced Early in Experimental Ustilaginoidea virens Infection and Affects Transcription in Rice

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Ustiloxin is a kind of 13-membered cyclic peptides found in mature rice false smut generated by Ustilaginoidea virens infecting rice spikelet. So far, six kinds of ustiloxins have been identified from false smut balls (FSBs) in which ustiloxin A is the main component. The toxins can not only inhibit the growth of rice, wheat, and corn, but also poison people and animals. However, so far, there have been few studies of the content of ustiloxin except that in mature FSB. The effect of ustiloxins on the process of infection has not been clarified. In this study, the technique of artificial inoculation coupled with UPLC-ESI–MS was introduced to investigate the content of ustiloxins in the course of infection. The initial formation time of ustiloxin A, B, C, D, F, and G was no later than 5, 5, 9, 7, 7, and 9 days post inoculation (dpi) prior to FSB’s formation, respectively. The content of ustiloxin A per spikelet was increased rapidly from 6.0 ng at 5 dpi to 14,157.1 ng at 25 dpi. Meanwhile, the content of ustiloxin A per dry weight (DW) of the FSBs also peaked at 1321.2 μg/g at 25 dpi. Interestingly, both the contents of ustiloxin A per dry weight and per spikelet were significantly reduced from 25 to 30 dpi. Transcriptome sequencing revealed that a total of 146 transcripts (103 upregulated and 43 downregulated) were significantly changed in rice spikelets after 3-h acute exposure to 100 ng ustiloxin A. In addition, several of the significantly altered genes were validated by RT-qPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang Y, Zhang K, Fang AF, Han YQ, Yang J, Xue MF, Bao JD, Hu DW, Zhou B, Sun XY, Li SJ, Wen M, Yao N, Ma LJ, Liu YF, Zhang M, Huang F, Luo CX, Zhou LG, Li JQ, Chen ZY, Miao JK, Wang S, Lai JS, Xu JR, Hsiang T, Peng YL, Sun WX (2014) Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat Commun 5:3849. https://doi.org/10.1038/ncomms4849

    Article  CAS  PubMed  Google Scholar 

  2. Lu DH, Yang XQ, Mao JH, Ye HL, Wang P, Chen YP, He ZQ, Chen F (2009) Characterising the pathogenicity diversity of Ustilaginoidea virens in hybrid rice in China. J Plant Pathol 91:443–451

    Google Scholar 

  3. Tang YX, Jin J, Hu DW, Yong ML, Xu Y, He LP (2013) Elucidation of the infection process of Ustilaginoidea virens (teleomorph: Villosiclava virens) in rice spikelets. Plant Pathol 62:1–8. https://doi.org/10.1111/j.1365-3059.2012.02629.x

    Article  Google Scholar 

  4. Fu XX, Wang XH, Cui YL, Wang AL, Lai DW, Liu Y, Li QX, Wang BM, Zhou LG (2015) A monoclonal antibody-based enzyme-linked immunosorbent assay for detection of ustiloxin A in rice false smut balls and rice samples. Food Chem 181:140–145. https://doi.org/10.1016/j.foodchem.2015.02.068

    Article  CAS  PubMed  Google Scholar 

  5. Koiso Y, Natori M, Iwasaki S, Sato S, Sonoda R, Fujita Y, Yaegashi H, Sato Z (1992) Ustiloxin: a phytotoxin and a mycotoxin from false smuth balls on rice panicles. Tetrahedron Lett 33:4157–4160. https://doi.org/10.1016/S0040-4039(00)74677-6

    Article  CAS  Google Scholar 

  6. Shibata S, Ogihara Y, Ohta A (1963) Metabolic products of fungi. XXII. On ustilaginoidins. (2). The structure of ustilaginoidin A. Chem Pharm Bull 11:1179–1182. https://doi.org/10.1248/cpb.11.1179

    Article  CAS  Google Scholar 

  7. Lai DW, Meng JJ, Zhang XP, Xu D, Dai JG, Zhou LG (2019) Ustilobisorbicillinol A, a cytotoxic sorbyl-containing aromatic polyketide from Ustilaginoidea virens. Org Lett 21:1311–1314. https://doi.org/10.1021/acs.orglett.8b04101

    Article  CAS  PubMed  Google Scholar 

  8. Wang XH, Wang J, Lai DW, Wang WX, Dai JG, Zhou LG, Liu Y (2017) Ustiloxin G, a new cyclopeptide mycotoxin from rice false smut balls. Toxins 9:54. https://doi.org/10.3390/toxins9020054

    Article  CAS  PubMed Central  Google Scholar 

  9. Koiso Y, Li Y, Iwasaki S, Hanaka K, Kobayashi T, Sonoda R, Fujita Y, Yaegashi H, Sato Z (1994) Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. J Antibiot 47:765–773. https://doi.org/10.7164/antibiotics.47.765

    Article  CAS  Google Scholar 

  10. Koiso Y, Morisaki N, Yamashita Y, Mitsui Y, Shirai R, Hashimoto Y, Iwasaki S (1998) Isolation and structure of an antimitotic cyclic peptide, ustiloxin F. J antibiot 51:418–422. https://doi.org/10.7164/antibiotics.51.418

    Article  CAS  Google Scholar 

  11. Nakamura K, Izumiyama N, Ohtsubo K, Koiso Y, Iwasaki S (1993) Apoptosis induced in the liver, kidney and urinary bladder of mice by the fungal toxin produced by Ustilaginoidea virens. Mycotoxins 1993:25–30. https://doi.org/10.2520/myco1975.1993.38_25

    Article  Google Scholar 

  12. Hu Z, Dang Y, Liu C, Zhou L, Liu H (2019) Acute exposure to ustiloxin A affects growth and development of early life zebrafish, Danio rerio. Chemosphere 226:851–857. https://doi.org/10.1016/j.chemosphere.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  13. Ludueña RF, Roach MC, Prasad V, Banerjee M, Koiso Y, Li Y, Iwasaki S (1994) Interaction of ustiloxin A with bovine brain tubulin. Biochem Pharmacol 47:1593–1599. https://doi.org/10.1016/0006-2952(94)90537-1

    Article  PubMed  Google Scholar 

  14. Ranaivoson FM, Gigant B, Berritt S, Joullie M, Knossow M (2012) Structural plasticity of tubulin assembly probed by vinca-domain ligands. Acta Crystallogr D 68:927–934. https://doi.org/10.1107/S0907444912017143

    Article  CAS  PubMed  Google Scholar 

  15. Baidyaroy D, Brosch G, Graessle S, Trojer P, Walton JD (2002) Characterization of inhibitor-resistant histone deacetylase activity in plant-pathogenic fungi. Eukaryot Cell 1:538–547. https://doi.org/10.1128/ec.1.4.538-547.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller JD, Young JC (1985) Deoxynivalenol in an experimental Fusarium graminearum infection of wheat. Can J Plant Pathol 7:132–134. https://doi.org/10.1080/07060668509501488

    Article  CAS  Google Scholar 

  17. Miller JD, Arnison PG (1986) Degradation of deoxynivalenol by suspension cultures of the fusarium head blight resistant wheat cultivar Frontana. Can J Plant Pathol 8:147–150. https://doi.org/10.1080/07060668609501818

    Article  CAS  Google Scholar 

  18. Wang XH, Fu XX, Lin FK, Sun WB, Meng JJ, Wang AL, Lai DW, Zhou LG, Liu Y (2016) The contents of ustiloxins A and B along with their distribution in rice false smut balls. Toxins 8:262. https://doi.org/10.3390/toxins8090262

    Article  CAS  PubMed Central  Google Scholar 

  19. Shan TJ, Sun WB, Wang XH, Fu XX, Sun WX, Zhou LG (2013) Purification of ustiloxins A and B from rice false smut balls by macroporous resins. Molecules 18:8181. https://doi.org/10.3390/molecules18078181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song JH, Wei W, Lv B, Lin Y, Yin WX, Peng YL, Schnabel G, Huang JB, Jiang DH, Luo CX (2016) Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary. Environ Microbiol 18:3840–3849. https://doi.org/10.1111/1462-2920.13343

    Article  PubMed  Google Scholar 

  21. Jia Q, Lv B, Guo MY, Luo CX, Zheng L, Hsiang T, Huang JB (2015) Effect of rice growth stage, temperature, relative humidity and wetness duration on infection of rice panicles by Villosiclava virens. Eur J Plant Pathol 141:15–25. https://doi.org/10.1007/s10658-014-0516-4

    Article  Google Scholar 

  22. Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171. https://doi.org/10.1007/978-94-010-0448-0_11

    Article  CAS  PubMed  Google Scholar 

  23. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  Google Scholar 

  25. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21:2213–2223. https://doi.org/10.1101/gr.124321.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2015) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Bioph Res Co 345:646–651. https://doi.org/10.1016/j.bbrc.2006.04.140

    Article  CAS  Google Scholar 

  29. Fan J, Guo XY, Li L, Huang F, Sun WX, Li Y, Huang YY, Xu YJ, Shi J, Lei Y (2015) Infection of Ustilaginoidea virens intercepts rice seed formation but activates grain-filling-related genes. J Integr Plant Biol 57:577–590. https://doi.org/10.1111/jipb.12299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lanubile A, Logrieco A, Battilani P, Proctor RH, Marocco A (2013) Transcriptional changes in developing maize kernels in response to fumonisin-producing and nonproducing strains of Fusarium verticillioides. Plant Sci 210:183–192. https://doi.org/10.1016/j.plantsci.2013.05.020

    Article  CAS  PubMed  Google Scholar 

  31. Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. https://doi.org/10.1016/j.tplants.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  32. Fang CT, Kuo HH, Hsu SC, Yih LH (2019) HSP70 is required for the proper assembly of pericentriolar material and function of mitotic centrosomes. Cell Div 14:4. https://doi.org/10.1186/s13008-019-0047-7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Suri SS, Dhindsa RS (2008) A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant Cell Environ 31:218–226. https://doi.org/10.1111/j.1365-3040.2007.01754.x

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Koiso Y, Kobayashi H, Hashimoto Y, Iwasaki S (1995) Ustiloxins, new antimitotic cyclic peptides: interaction with porcine brain tubulin. Biochem Pharmacol 49:1367–1372. https://doi.org/10.1016/0006-2952(95)00072-8

    Article  CAS  PubMed  Google Scholar 

  35. Chernys JT, Zeevaart JAD (2000) Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124:343–354. https://doi.org/10.1104/pp.124.1.343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun S, Fan W, Mu Z (2017) The spatio-temporal specificity of PYR1/PYL/RCAR ABA receptors in response to developmental and environmental cues. Plant Signal Behav 12:e1214793. https://doi.org/10.1080/15592324.2016.1214793

    Article  CAS  PubMed  Google Scholar 

  37. Jiang CJ, Nakajima N, Kondo N (1996) Disruption of microtubules by abscisic acid in guard cells of Vicia faba L. Plant Cell Physiol 37:697–701. https://doi.org/10.1093/oxfordjournals.pcp.a029001

    Article  CAS  Google Scholar 

  38. Lü B, Gong ZH, Wang J, Zhang JH, Liang JS (2007) Microtubule dynamics in relation to osmotic stress-induced ABA accumulation in Zea mays roots. J Exp Bot 58:2565–2572. https://doi.org/10.1093/jxb/erm107

    Article  CAS  PubMed  Google Scholar 

  39. Yang JC, Zhang JH (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236. https://doi.org/10.1111/j.1469-8137.2005.01597.x

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Liu K, Wang ZQ, Liu LJ, Yang JC (2015) Abscisic acid, ethylene and antioxidative systems in rice grains in relation with grain filling subjected to postanthesis soil-drying. Plant Growth Regul 76:135–146. https://doi.org/10.1007/s10725-014-9983-z

    Article  CAS  Google Scholar 

  41. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43. https://doi.org/10.1111/nph.12797

    Article  PubMed  Google Scholar 

  42. Zhu Y, Qian WQ, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6:e1000844. https://doi.org/10.1371/journal.ppat.1000844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu JZ, Feng LL, Li JM, He ZH (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00267

    Article  PubMed  PubMed Central  Google Scholar 

  44. Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425

    Article  CAS  PubMed  Google Scholar 

  45. Han YQ, Zhang K, Yang J, Zhang N, Fang AF, Zhang Y, Liu YF, Chen ZY, Hsiang T, Sun WX (2015) Differential expression profiling of the early response to Ustilaginoidea virens between false smut resistant and susceptible rice varieties. BMC Genom 16:955. https://doi.org/10.1186/s12864-015-2193-x

    Article  CAS  Google Scholar 

  46. Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe In 13:191–202. https://doi.org/10.1094/mpmi.2000.13.2.191

    Article  CAS  Google Scholar 

  47. Agrawal GK, Jwa N-S, Rakwal R (2000) A novel rice (Oryza sativa l.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Bioph Res Co 274:157–165. https://doi.org/10.1006/bbrc.2000.3114

    Article  CAS  Google Scholar 

  48. Moon SJ, Park HJ, Kim TH, Kang JW, Lee JY, Cho JH, Lee JH, Park DS, Byun MO, Kim BG, Shin DJ (2018) OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS ONE 13:e0206910. https://doi.org/10.1371/journal.pone.0206910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vellosillo T, Martínez M, López MA, Vicente J, Cascón T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19:831–846. https://doi.org/10.1105/tpc.106.046052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang JX, Cai MH, Long QZ, Liu LL, Lin QY, Jiang L, Chen SH, Wan JM (2014) OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Res 23:643–655. https://doi.org/10.1007/s11248-014-9803-2

    Article  CAS  PubMed  Google Scholar 

  51. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333. https://doi.org/10.1046/j.1365-313x.2001.01096.x

    Article  CAS  PubMed  Google Scholar 

  52. Nalam VJ, Alam S, Keereetaweep J, Venables B, Burdan D, Lee H, Trick HN, Sarowar S, Makandar R, Shah J (2015) Facilitation of Fusarium graminearum infection by 9-lipoxygenases in Arabidopsis and wheat. Mol Plant Microbe In 28:1142–1152. https://doi.org/10.1094/mpmi-04-15-0096-r

    Article  CAS  Google Scholar 

  53. Vicente J, Cascón T, Vicedo B, García-Agustín P, Hamberg M, Castresana C (2012) Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense. Mol Plant 5:914–928. https://doi.org/10.1093/mp/ssr105

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Special Technical Innovation of Hubei Province (2017ABA146) and the Fundamental Research Funds for the Central Universities (2662018JC048).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ZH and LZ; Methodology, LZ and CL; Data Curation, ZH and HL; Validation, JH and HL; Writing-Original Draft Preparation, ZH; Writing-Review & Editing, HL; Supervision, JH and HL; Project Administration, HL; Funding Acquisition, HL.

Corresponding author

Correspondence to Hao Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Zheng, L., Huang, J. et al. Ustiloxin A is Produced Early in Experimental Ustilaginoidea virens Infection and Affects Transcription in Rice. Curr Microbiol 77, 2766–2774 (2020). https://doi.org/10.1007/s00284-020-02072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02072-6

Navigation