Skip to main content
Log in

Characterization of a Protease Hyper-Productive Mutant of Bacillus pumilus by Comparative Genomic and Transcriptomic Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacillus pumilus BA06 has great potential for the production of alkaline proteases. To improve the protease yield, classical mutagenesis to combine the physical and chemical mutagens was performed to obtain a protease hyper-productive mutant SCU11. The full genome sequences of BA06 and SCU11 strains were assembled through DNA sequencing using the PacBio sequencing platform. By comparative genomics analysis, 147 SNPs and 15 InDels were found between these two genomes, which lead to alternation of coding sequence in 15 genes. Noticeable, the gene (kinA) encoding sporulation kinase A is interrupted by introducing a stop codon in its coding region in BA06. Interestedly, this gene is reversely corrected in SCU11. Furthermore, comparative transcriptome analysis revealed that kinA and two positive regulatory genes (DegU and Spo0A) were upregulated in transcription in SCU11. In terms of the transcriptional data, upregulation of a phosphorylation cascade starting with KinA may enhance Spo0A phosphorylation, and thus activate expression of the gene aprE (encoding major extracellular protease) through repression of AbrB (a repressor of aprE) and activation of SinI, an antagonist of SinR (a repressor of aprE). In addition, the other genes involved in various metabolic pathways, especially of membrane transport and sporulation, were altered in transcription between these two strains. Conclusively, our transcriptome data suggested that upregulation degU and spo0A, as well as kinA, may at least partially contribute to the high production of alkaline protease in SCU11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The PacBio SMRT sequencing dataset of B. pumilus BA06 was deposited at NCBI SRA database (Accession no: PRJNA515162). The SMRT and Illumina sequencing datasets of B. pumilus SCU11 have been deposited at NCBI SRA database with accession numbers of PRJNA606253 and PRJNA515152, respectively. The RNA-seq reads of B. pumilus BA06 and SCU11 are available in NCBI SRA database with accession numbers of PRJNA475378 and PRJNA480562.

References

  1. Liu Y, Lai Q, Dong C, Sun F, Wang L, Li G, Shao Z (2013) Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS ONE 8:e80097

    Article  CAS  PubMed  Google Scholar 

  2. Baweja M, Tiwari R, Singh PK, Lata N, Pratyoosh S (2016) An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive. Front Microbiol 7:1195

    PubMed  Google Scholar 

  3. Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S (2008) Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochim 90:1291–1305

    Article  CAS  Google Scholar 

  4. Huang Q, Peng Y, Li X, Wang H, Zhang Y (2003) Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr Microbiol 46:0169–0173

    Article  CAS  Google Scholar 

  5. Kumar L, Nagar S, Mittal A, Garg N, Gupta VK (2014) Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grape juices. J Food Sci Technol 51:1737–1749

    Article  CAS  PubMed  Google Scholar 

  6. Klug-Santner BG, Schnitzhofer W, Vršanská M, Weber J, Agrawal PB, Nierstrasz VA, Guebitz GM (2006) Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J Biotechnol 121:390–401

    Article  CAS  PubMed  Google Scholar 

  7. Contesini FJ, de Melo RR, Sato HH (2017) An overview of Bacillus proteases: from production to application. Crt Rev Biotech 38:1–14

    Google Scholar 

  8. Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  CAS  PubMed  Google Scholar 

  9. Küppers T, Steffen V, Hellmuth H, O’Connell T, Bongaerts J, Maurer KH, Wiechert W (2014) Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer. Microbiol Cell Fact 13:46

    Article  CAS  Google Scholar 

  10. Wemhoff S, Meinhardt F (2013) Generation of biologically contained, readily transformable, and genetically manageable mutants of the biotechnologically important Bacillus pumilus. Appl Microbiol Biotechnol 97:7805–7819

    Article  CAS  PubMed  Google Scholar 

  11. Wang X-C, Zhao H-Y, Liu G, Cheng X-J, Feng H (2016) Improving production of extracellular proteases by random mutagenesis and biochemical characterization of a serine protease in Bacillus subtilis s1–4. Genet Mol Res 16:15

    Google Scholar 

  12. Su C, Zhou W, Fan Y, Wang L, Zhao S, Yu Z (2006) Mutation breeding of chitosanase-producing strain Bacillus sp. s65 by low-energy ion implantation. J Ind Microbiol Biotechnol 33:1037–1042

    Article  CAS  PubMed  Google Scholar 

  13. Xu T-T, Bai Z-Z, Wang L-J, He B-F (2010) Breeding of D(-)-lactic acid high producing strain by low-energy ion implantation and preliminary analysis of related metabolism. Appl Biochem Biotechnol 160:314–321

    Article  CAS  PubMed  Google Scholar 

  14. Shikha AS, Sharan A, Darmwal NS (2007) Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresour Technol 98:881–885

    Article  CAS  PubMed  Google Scholar 

  15. Saeki K, Ozaki K, Kobayashi T, Ito S (2007) Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 103:501–508

    Article  CAS  PubMed  Google Scholar 

  16. Zhao S, Yan YS, He QP, Yang L, Yin X, Li CX, Mao LC, Liao LS, Huang JQ, Xie SB, Nong DQ, Zhang Z, Jiang L, Xiong YR, Duan CJ, Liu JL, Feng JX (2016) Comparative genomic, transcriptomic and secretomic profiling of Penicillium oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106, and identification of two novel regulatory genes of cellulase and xylanase gene expression. Biotechnol Biofuels 9:203

    Article  PubMed  CAS  Google Scholar 

  17. Wan MY, Wang HY, Zhang YZ, Feng H (2009) Substrate specificity and thermostability of the dehairing alkaline protease from Bacillus pumilus. Appl Biochem Biotechnol 159:394–403

    Article  CAS  PubMed  Google Scholar 

  18. Wang HY, Liu DM, Liu Y, Cheng CF, Ma QY, Huang Q, Zhang YZ (2007) Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett Appl Microbiol 44:1–6

    Article  CAS  PubMed  Google Scholar 

  19. Strauch MA, Hoch JA (1993) Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol 7:337–342

    Article  CAS  PubMed  Google Scholar 

  20. Strauch MA, Spiegelman GB, Perego M, Johnson WC, Burbulys D, Hoch JA (1989) The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J 8:1615–1621

    Article  CAS  PubMed  Google Scholar 

  21. Shimane K, Ogura M (2004) Mutational analysis of the helix-turn-helix region of Bacillus subtilis response regulator DegU, and identification of cis-acting sequences for DegU in the aprE and comK promoters. J Biochem 136:387–397

    Article  CAS  PubMed  Google Scholar 

  22. Gaur NK, Oppenheim J, Smith I (1991) The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J Bacteriol 173:678–686

    Article  CAS  PubMed  Google Scholar 

  23. Barbier G, Albertini AM, Ferari E, Sonenshein AL, Belitsky BR (2016) Interplay of CodY and ScoC in the regulation of major extracellular protease genes of Bacillus subtilis. J Bacteriol 198:907–920

    Article  CAS  Google Scholar 

  24. Verhamme DT, Kiley TB, Stanley-Wall NR (2007) DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol 65:554–568

    Article  CAS  PubMed  Google Scholar 

  25. Dahl MK, Msadek T, Kunst F, Rapoport G (1992) The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem 267:14509–14514

    Article  CAS  PubMed  Google Scholar 

  26. Ogura M, Shimane K, Asai K, Ogasawra N, Tanaka T (2003) Binding of respone regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol Microbiol 49:1685–1697

    Article  CAS  PubMed  Google Scholar 

  27. Han L-L, Liu Y-C, Miao C-C, Feng H (2019) Disruption of the pleiotropic gene scoC causes transcriptomic and phenotypical changes in Bacillus pumilus BA06. BMC Genom 20:327

    Article  Google Scholar 

  28. Ogura M, Tanaka T (1997) Expression of alkaline protease gene in Bacillus subtilis mutants that lack positive regulatory genes degR, degQ, senS, tenA and proB. Biosci Biotechnol Biochem 61:372–374

    Article  CAS  Google Scholar 

  29. Ogura M, Matsuzawa A, Yoshikawa H, Tanaka T (2004) Bacillus subtilis SalA (YbaL) negatively regulates expression of scoC, which encodes the repressor for the alkaline exoprotease gene, aprE. J Bacteriol 186:3056–3064

    Article  CAS  PubMed  Google Scholar 

  30. Abe S, Yasumura A, Tanaka T (2009) Regulation of Bacillus subtilis aprE expression by glnA through inhibition of scoC and σD-dependent degR expression. J Bacteriol 191:3050–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kodama T, Endo K, Ara K, Ozaki K, Kakeshita H, Yamane K, Sekiguchi J (2007) Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis. J Biosci Bioeng 103:13–21

    Article  CAS  PubMed  Google Scholar 

  32. Fujita M, Losick R (2005) Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Gene Dev 19:2236–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strauch M, Webb V, Spiegelman G, Hoch JA (1990) The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci USA 87:1801–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bai U, Mandic-Mulec I, Smith I (1993) SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev 7:139–148

    Article  CAS  PubMed  Google Scholar 

  35. Hoch JA (1993) Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol 47:441–465

    Article  CAS  PubMed  Google Scholar 

  36. Zhao HY, Feng H (2018) Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution. BMC Biotechnol 18:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chin CS, Rank DR, Eid JS, Travers KJ, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38:e159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569

    Article  CAS  PubMed  Google Scholar 

  39. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC et al (2012) Mind the gap: upgrading genomes with Pacific biosciences RS long-read sequencing technology. PLoS ONE 7:e47768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao CW, Wang HY, Zhang YZ, Feng H (2012) Draft genome sequence of Bacillus pumilus BA06, a producer of alkaline serine protease with leather-dehairing function. J Bacteriol 194:6668–6669

    Article  CAS  PubMed  Google Scholar 

  41. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963

    Article  PubMed  CAS  Google Scholar 

  42. Darling ACE, Mau B, Blattner FR et al (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genom Res 14:1394–1403

    Article  CAS  Google Scholar 

  43. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acid Res 38:e164

    Article  PubMed  CAS  Google Scholar 

  44. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  45. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acid Res 29:22–28

    Article  CAS  PubMed  Google Scholar 

  46. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Tarver LI, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acid Res 34:D354–D357

    Article  CAS  PubMed  Google Scholar 

  48. Pruitt KD, Tatusova T, Maglott DR (2005) NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acid Res 35(Database issue):D501–D504

    Article  CAS  Google Scholar 

  49. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acid Res 32(Web Server issue):W20–W25

    Article  CAS  PubMed  Google Scholar 

  50. Sheng Q, Vickers K, Zhao S, Wang J, Samuels DC, Koues O, Shyr Y, Guo Y (2017) Multi-perspective quality control of illumina rna sequencing data analysis. Brief Funct Genom 16:194–204

    CAS  Google Scholar 

  51. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protocol 11:1650–1667

    Article  CAS  Google Scholar 

  54. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  55. Caraux G, Pinloche S (2005) PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21:1280–1281

    Article  CAS  PubMed  Google Scholar 

  56. Corvey C, Stein T, Düsterhus S, Karas M, Entian KD (2003) Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem Biophys Res Commun 304:48–54

    Article  CAS  PubMed  Google Scholar 

  57. Brückner R, Shoseyov O, Doi RH (1990) Multiple active forms of a novel serine protease from Bacillus subtilis. Mol Gen Genet 221:486–490

    Article  PubMed  Google Scholar 

  58. Ruppen ME, Van Alstine GL, Band L (1988) Control of intracellular serine protease expression in Bacillus subtilis. J Bacteriol 170:136–140

    Article  CAS  PubMed  Google Scholar 

  59. Sloma A, Rufo GA, Rudolph CF, Sullivan BJ, Theriault KA, Pero J (1990) Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J Bacteriol 172:1470–1477

    Article  CAS  PubMed  Google Scholar 

  60. Wu XC, Nathoo S, Pang A, Carne T, Wong SL (1990) Cloning, genetic organization, and characterization of a structural gene encoding bacillopeptidase F from Bacillus subtilis. J Biol Chem 265:6845–6850

    Article  CAS  PubMed  Google Scholar 

  61. Kodama T, Endo K, Sawada K, Ara K, Ozaki K, Kakeshita H, Yamane K, Sekiguchi J (2007) Bacillus subtilis AprX involved in degradation of a heterologous protein during the late stationary growth phase. J Biosci Bioeng 104:135–143

    Article  CAS  PubMed  Google Scholar 

  62. Nakamura T, Yamagata Y, Ichishima E (1992) Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem 56:1869–1871

    Article  CAS  PubMed  Google Scholar 

  63. Toymentseva A, Mascher T, Sharipova MR (2017) Regulatory characteristics of Bacillus pumilus protease promoters. Curr Microbiol 74:550–559

    Article  CAS  PubMed  Google Scholar 

  64. Jan J, Valle F, Bolivar F, Merino E (2000) Characterization of the 5′ subtilisin (aprE) regulatory region from Bacillus subtilis. FEMS Microbiol Lett 183:9–14

    CAS  PubMed  Google Scholar 

  65. Wray LV Jr, Ferson AE, Rohrer K, Fisher SH (1996) TnrA, a transcriptional factor required for globle nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci USA 93:8841–8845

    Article  CAS  PubMed  Google Scholar 

  66. Msadek T, Kunst F, Henner D, Klier A, Rapoport G, Dedonder R (1990) Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J Bacteriol 172:824–834

    Article  CAS  PubMed  Google Scholar 

  67. Msadek T, Kunst F, Klier A, Rapoport G (1991) DegS-degU and comP-comA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J Bacteriol 173:2366–2377

    Article  CAS  PubMed  Google Scholar 

  68. Mukai K, Kawata-Mukai M, Tanaka T (1992) Stabilization of phosphorylated Bacillus subtilis DegU by DegR. J Bacteriol 174:7954–7962

    Article  CAS  PubMed  Google Scholar 

  69. Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    Article  CAS  PubMed  Google Scholar 

  70. Wang L, Fabret C, Kanamaru K, Stephenson K, Dartois V, Perego M, Hoch JA (2001) Dissection of the functional and structural domains of phosphorelay histidine kinase A of Bacillus subtilis. J Bacteriol 183:2795–2802

    Article  CAS  PubMed  Google Scholar 

  71. Derouiche A, Shi L, Bidnenko V, Ventroux M, Pigonneau N, Franz-Wachtel M, Kalantari A, Nessler S, Noirot-Gros, Mijakovvic I (2015) Bacillus subtilis SalA is a phosphoryaltion-depdendent transcription regulator that represses scoC and activates the production of the exoprotease AprE. Mol Microbiol 97:1195–1208

  72. Eswaramoorthy P, Duan D, Dinh J, Dravis A, Devi SN, Fujita M (2010) The threshold level of the sensor histidine kinase KinA governs entry into sporulation in Bacillus subtilis. J Bacteriol 192:3870–3882

    Article  CAS  PubMed  Google Scholar 

  73. Kobayashi K, Kuwana R, Takanatsu H (2008) kinA mRNA is missing a stop codon in the undomesticated Bacillus subtilis strain ATCC6051. Microbiology 154:54–63

    Article  CAS  PubMed  Google Scholar 

  74. Driks A (1999) Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brantl S, Müller P (2019) Toxin-antitoxin systems in Bacillus subtilis. Toxins 11:262

    Article  CAS  PubMed Central  Google Scholar 

  76. Elbaz M, Ben-Yehuda S (2015) Following the fate of bacterial cells experiencing sudden chromosome loss. mBio 6:e00092–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bloom-Ackermann Z, Steinberg N, Rosenberg G, Oppenheimer-Shaanan Y, Pollack D, Ely S, Storzi N, Levy A, Kolodkin-Gal I (2016) Toxin-antitoxin systems eliminate defective cells and preserve symmetry in Bacillus subtilis biofilms. Environ Microbiol 18:5032–5047

    Article  CAS  PubMed  Google Scholar 

  78. Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE, Liu JS, Losick R (2003) The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50:1683–1701

    Article  CAS  PubMed  Google Scholar 

  79. Holberger LE, Garza-Sánchez F, Lamoureux J, Low DA, Hayes CS (2012) A novel family of toxin/antitoxin proteins in Bacillus species. FEBS Lett 586:132–136

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by a grant (2016NZ2016) from the Department of Sciences and Technology of Sichuan province. The funding sponsor had no role in the design of the study, in the collections, analysis, or interpretation of data, in the writing of the manuscript, and in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Contributions

HF and YCL conceived and designed the experiments; YCL, LLH, TYC, and YBL performed the experiments; YCL, YBL, and HF analyzed the data; HF and YCL wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1975 kb)

Supplementary file2 (XLSX 844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YC., Han, LL., Chen, TY. et al. Characterization of a Protease Hyper-Productive Mutant of Bacillus pumilus by Comparative Genomic and Transcriptomic Analysis. Curr Microbiol 77, 3612–3622 (2020). https://doi.org/10.1007/s00284-020-02154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02154-5

Navigation